• Title/Summary/Keyword: Ginsenoside F2

Search Result 134, Processing Time 0.026 seconds

알코올성 간손상을 유발한 마우스 모델에서의 새싹인삼 지상부 추출물의 간 기능 보호효과 및 지표성분 함량분석 (Protective effects of extracts from the aerial parts of hydroponically cultured ginseng on alcohol-induced liver damage in mice and quantitative analysis of major ginsenosides)

  • 이미경;장인배;이민호;이대영
    • Journal of Applied Biological Chemistry
    • /
    • 제63권4호
    • /
    • pp.413-420
    • /
    • 2020
  • 알코올성 간손상을 유발한 마우스 모델에서 새싹인삼 지상부 추출물(HGE)의 간 보호 효과를 확인하였다. 알코올성 간손상 모델은 25% 알코올을 마우스에 5 g/kg의 농도로 경구 투여하여 이루어졌고, HGE를 투여한 군에는 알코올을 투여하기 3일전부터 경구투여를 시작하여 10일간 마우스 개체 당 4와 12 mg/kg의 농도로 경구투여 하였다. HGE를 투여한 그룹에서는 알코올만 처리한 대조군에 비해 AST 및 ALT 수치가 농도의존적으로 낮아진 것을 확인하였다. 또한, 간손상에 의해 증가된 LDH 수치는 대조군과 유사하게 감소하였다. 새싹인삼 지상부 추출물로 부터 ginsenoside F5, F3, F1, 및 F2의 정량분석 결과는 각각 2.5, 4.4, 1.4, 및 23.3 mg/g으로 확인하였다.

지역별 4년근 산양삼의 생육특성 및 진세노사이드 함량 간의 상관관계 분석 (Correlation analysis between growth characteristics and ginsenoside contents of 4-year-old wild-simulated ginseng (Panax ginseng C.A. Meyer) with different cultivation sites)

  • 윤영배;허정훈;정대희;김지아;엄유리
    • Journal of Applied Biological Chemistry
    • /
    • 제65권4호
    • /
    • pp.253-259
    • /
    • 2022
  • 본 연구의 목적은 서로 다른 지역에서 재배된 4년근 산양삼의 생육특성과 진세노사이드 함량 간의 상관관계를 조사하는 것이다. 유효 인산을 제외한 대부분의 토양 특성은 다른 재배지에서 보다 평창에서 유의적으로 높았다. 뿌리 길이와 세근수를 제외한 생육특성은 다른 재배지보다 평창 재배지에서 유의적으로 높게 나타났다. 8종의 진세노사이드 함량의 경우, 무주 재배지의 F2-AS 함량은 다른 재배지보다 높았으며, 영주 재배지의 F1 함량은 유의적으로 높게 나타났다. 영월 재배지에서는 Rb1과 Re-p의 함량이 유의적으로 높았고, 평창 재배지에서 Ro의 함량은 다른 재배지보다 유의적으로 높게 나타났다. 뿌리 길이와 토양 pH는 각각 토양특성 및 산양삼의 생육특성과 유의적인 상관관계를 보이지 않았다. 대부분의 생육특성은 전기전도도 및 유기물 함량, 전질소 함량, 치환성양이온(K+, Ca2+, Mg2+), 양이온치환용량과 유의적인 정의 상관관계를 보였다. Rb1과 Re-p는 세근수를 제외한 대부분의 산양삼 생육특성과 유의적인 부의 상관관계를 보였다. Ro는 줄기 길이, 줄기당 소엽수, 소엽 길이, 소엽 넓이, 뿌리 두께와 유의적인 정의 상관관계를 보였다. 본 연구의 이러한 결과는 4년근 산양삼의 생육특성과 진세노사이드 함량 간의 상관관계를 조사함으로써 품질 기준을 수립하기 위해 유용한 정보를 제공하는 데 도움이 될 수 있을 것이다.

Changes in the ginsenoside content during the fermentation process using microbial strains

  • Lee, So Jin;Kim, Yunjeong;Kim, Min-Gul
    • Journal of Ginseng Research
    • /
    • 제39권4호
    • /
    • pp.392-397
    • /
    • 2015
  • Background: Red ginseng (RG) is processed from Panax ginseng via several methods including heat treatment, mild acid hydrolysis, and microbial conversion to transform the major ginsenosides into minor ginsenosides, which have greater pharmaceutical activities. During the fermentation process using microbial strains in a machine for making red ginseng, a change of composition occurs after heating. Therefore, we confirmed that fermentation had occurred using only microbial strains and evaluated the changes in the ginsenosides and their chemical composition. Methods: To confirm the fermentation by microbial strains, the fermented red ginseng was made with microbial strains (w-FRG) or without microbial strains (n-FRG), and the fermentation process was performed to tertiary fermentation. The changes in the ginsenoside composition of the self-manufactured FRG using the machine were evaluated using HPLC, and the 20 ginsenosides were analyzed. Additionally, we investigated changes of the reducing sugar and polyphenol contents during fermentation process. Results: In the fermentation process, ginsenosides Re, Rg1, and Rb1 decreased but ginsenosides Rh1, F2, Rg3, and Compound Y (C.Y) increased in primary FRG more than in the raw ginseng and RG. The content of phenolic compounds was high in FRG and the highest in the tertiary w-FRG. Moreover, the reducing sugar content was approximately three times higher in the tertiary w-FRG than in the other n-FRG. Conclusion: As the results indicate, we confirmed the changes in the ginsenoside content and the role of microbial strains in the fermentation process.

Quantitative aspects of the hydrolysis of ginseng saponins: Application in HPLC-MS analysis of herbal products

  • Abashev, Mikhail;Stekolshchikova, Elena;Stavrianidi, Andrey
    • Journal of Ginseng Research
    • /
    • 제45권2호
    • /
    • pp.246-253
    • /
    • 2021
  • Background: Ginseng is one of the most valuable herbal supplements. It is challenging to perform quality control of ginseng products due to the diversity of bioactive saponins in their composition. Acid or alkaline hydrolysis is often used for the structural elucidation of these saponins and sugars in their side chains. Complete transformation of the original ginsenosides into their aglycones during the hydrolysis is one of the ways to determine a total saponin group content. The main hurdle of this approach is the formation of various by-products that was reported by many authors. Methods: Separate HPLC assessment of the total protopanaxadiol, protopanaxatriol and ocotillol ginsenoside contents is a viable alternative to the determination of characteristic biomarkers of these saponin groups, such as ginsenoside Rf and pseudoginsenoside F11, which are commonly used for authentication of P. ginseng Meyer and P. quinquefolius L. samples respectively. Moreover, total ginsenoside content is an ideal aggregated parameter for standardization and quality control of ginseng-based medicines, because it can be directly applied for saponin dosage calculation. Results: Different hydrolysis conditions were tested to develop accurate quantification method for the elucidation of total ginsenoside contents in herbal products. Linearity, limits of quantification, limits of detection, accuracy and precision were evaluated for the developed HPLC-MS method. Conclusion: Alkaline hydrolysis results in fewer by-products than sugar elimination in acidic conditions. An equimolar response, as a key parameter for quantification, was established for several major ginsenosides. The developed approach has shown acceptable results in the analysis of several different herbal products.

Effects of gut microbiota on the pharmacokinetics of protopanaxadiol ginsenosides Rd, Rg3, F2, and compound K in healthy volunteers treated orally with red ginseng

  • Kim, Jeon-Kyung;Choi, Min Sun;Jeung, Woonhee;Ra, Jehyeon;Yoo, Hye Hyun;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • 제44권4호
    • /
    • pp.611-618
    • /
    • 2020
  • Background: It is well recognized that gut microbiota is involved in the biotransformation of ginsenosides by converting the polar ginsenosides to nonpolar bioactive ginsenosides. However, the roles of the gut microbiota on the pharmacokinetics of ginsenosides in humans have not yet been fully elucidated. Methods: Red ginseng (RG) or fermented red ginseng was orally administered to 34 healthy Korean volunteers, and the serum concentrations of the ginsenosides were determined using liquid chromatography-tandem mass spectrometry. In addition, the fecal ginsenoside Rd- and compound K (CK)eforming activities were measured. Then, the correlations between the pharmacokinetic profiles of the ginsenosides and the fecal ginsenoside-metabolizing activities were investigated. Results: For the RG group, the area under the serum concentratione-time curve values of ginsenosides Rd, F2, Rg3, and CK were 8.20 ± 11.95 ng·h/mL, 4.54 ± 3.70 ng·h/mL, 36.40 ± 19.68 ng·h/mL, and 40.30 ± 29.83 ng·h/mL, respectively. For the fermented red ginseng group, the the area under curve from zero to infinity (AUC) values of ginsenosides Rd, F2, Rg3, and CK were 187.90 ± 95.87 ng·h/mL, 30.24 ± 41.87 ng·h/mL, 28.68 ± 14.27 ng·h/mL, and 137.01 ± 96.16 ng·h/mL, respectively. The fecal CK-forming activities of the healthy volunteers were generally proportional to their ginsenoside Rd-eforming activities. The area under the serum concentration-time curve value of CK exhibited an obvious positive correlation (r = 0.566, p < 0.01) with the fecal CK-forming activity. Conclusion: The gut microbiota may play an important role in the bioavailability of the nonpolar RG ginsenosides by affecting the biotransformation of the ginsenosides.

Ginsenoside Rg3 reduces the adhesion, invasion, and intracellular survival of Salmonella enterica serovar Typhimurium

  • Mechesso, Abraham F.;Quah, Yixian;Park, Seung-Chun
    • Journal of Ginseng Research
    • /
    • 제45권1호
    • /
    • pp.75-85
    • /
    • 2021
  • Background: Invasive infections due to foodborne pathogens, including Salmonella enterica serovar Typhimurium, are prevalent and life-threatening. This study aimed to evaluate the effects of ginsenoside Rg3 (Rg3) on the adhesion, invasion, and intracellular survival of S. Typhimurium. Methods: The impacts of Rg3 on bacterial growth and host cell viability were determined using the time kill and the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assays, respectively. Gentamicin assay and confocal microscopic examination were undertaken to determine the effects of Rg3 on the adhesive and invasive abilities of S. Typhimurium to Caco-2 and RAW 264.7 cells. Quantitative reverse transcription polymerase chain reaction was performed to assess the expression of genes correlated with the adhesion, invasion, and virulence of S. Typhimurium. Results: Subinhibitory concentrations of Rg3 significantly reduced (p < 0.05) the adhesion, invasion, and intracellular survival of S. Typhimurium. Rg3 considerably reduced (p < 0.05) the bacterial motility as well as the release of nitrite from infected macrophages in a concentration-dependent manner. The expression of genes related to the adhesion, invasion, quorum sensing, and virulence of S. Typhimurium including cheY, hilA, OmpD, PrgK, rsgE, SdiA, and SipB was significantly reduced after Rg3 treatment. Besides, the compound downregulated rac-1 and Cdc-42 that are essential for actin remodeling and membrane ruffling, thereby facilitating Salmonella entry into host cells. This report is the first to describe the effects of Rg3 on "trigger" entry mechanism and intracellular survival S. Typhimurium. Conclusion: Rg3 could be considered as a supplement agent to prevent S. Typhimurium infection.

Improved antimicrobial effect of ginseng extract by heat transformation

  • Xue, Peng;Yao, Yang;Yang, Xiu-shi;Feng, Jia;Ren, Gui-xing
    • Journal of Ginseng Research
    • /
    • 제41권2호
    • /
    • pp.180-187
    • /
    • 2017
  • Background: The incidence of halitosis has a prevalence of 22-50% throughout the world and is generally caused by anaerobic oral microorganisms, such as Fusobacterium nucleatum, Clostridium perfringens, and Porphyromonas gingivalis. Previous investigations on the structure-activity relationships of ginsenosides have led to contrasting results. Particularly, the antibacterial activity of less polar ginsenosides against halitosis-related bacteria has not been reported. Methods: Crude saponins extracted from the Panax quinquefolius leaf-stem (AGS) were treated at $130^{\circ}C$ for 3 h to obtain heat-transformed saponins (HTS). Five ginsenoside-enriched fractions (HTS-1, HTS-2, HTS-3, HTS-4, and HTS-5) and less polar ginsenosides were separated by HP-20 resin absorption and HPLC, and the antimicrobial activity and mechanism were investigated. Results: HPLC with diode-array detection analysis revealed that heat treatment induced an extensive conversion of polar ginsenosides (-Rg1/Re, -Rc, -Rb2, and -Rd) to less polar compounds (-Rg2, -Rg3, -Rg6, -F4, -Rg5, and -Rk1). The antimicrobial assays showed that HTS, HTS-3, and HTS-4 were effective at inhibiting the growth of F. nucleatum, C. perfringens, and P. gingivalis. Ginsenosides-Rg5 showed the best antimicrobial activity against the three bacteria, with the lowest values of minimum inhibitory concentration and minimum bactericidal concentration. One major reason for this result is that less polar ginsenosides can more easily damage membrane integrity. Conclusion: The results indicated that the less polar ginsenoside-enriched fraction from heat transformation can be used as an antibacterial agent to control halitosis.

HPLC SEPARATION AND QUANTITATIVE DETERMINATION OF GINSENOSIDES FROM PANAX GINSENG, PANAX QUINQUEFOLIUM AND FROM GINSENG DRUG PREPARATIONS

  • Soldati F
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1980년도 학술대회지
    • /
    • pp.59-69
    • /
    • 1980
  • A new HPLC-method for separation and quantitative determination of ginsenosides in Panax ginseng, Panax quinquefolium and in pharmaceutical drug preparations is elaborated. A reversed-phase-system with ${\mu}Bondapak\;C_{18}$ column (3.9 mm $I.D.{\times}30\;cm$) using acetonitrile-water (30:70) 2 ml/min and acetonitrile-water (18:82) 4 ml/min is suitable for the base-line separation of $Rb_1,\;Rb_2,\;Rc,\;Rd,\;Rf,\;Rg_2,\;respectively\;Re,\;Rg_1$ in 30 minutes. The ginsenosides are directly detected at 203 nm (without derivatization) with the LC-55 or LC-75 spectrophotometer (Perkin-Elmer) at $100\%$ transmission. Detection limit is 300 ng at a signal-to-noise ratio of 10:1. The ginsenosides-peak identification is carried out with HPTLC (high performance thin layer chromatography), with MIR-IR (multiple internal reflection-IR-spectros-copy) and with FD-MS (field desorption mass spectrometry). The calibration curve of each ginsenoside has a correlation coefficient very near to 1. Relative standard deviation for quantitative determinations depends upon the amount of ginsenosides and is approximately 1\%$ for ginsenoside contents of 1\%$. This method is adaptable for routine analysis in quality control laboratories.

  • PDF

Anti-cancer Activities of Ginseng Extract Fermented with Phellinus linteus

  • Lee, Jong-Jin;Kwon, Ho-Kyun;Jung, In-Ho;Cho, Yong-Baik;Kim, Kyu-Joong;Kim, Jong-Lae
    • Mycobiology
    • /
    • 제37권1호
    • /
    • pp.21-27
    • /
    • 2009
  • In the present study, the anti-cancer effects of ginseng fermented with Phellinus linteus (GFPL) extract were examined through in vitro and in vivo assays. GFPL was produced by co-cultivating ginseng and Phellinus linteus together. Ginsenoside Rg3, Rh1 and Rh2 are important mediators of anti-angiogenesis and their levels in GFPL were enriched 24, 19 and 16 times, respectively, more than that of ginseng itself through the fermentation. GFPL exhibited distinct anti-cancer effects, including growth inhibition of the human lung carcinoma cell line A549, and promotion of immune activation by stimulating nitric oxide (NO) production in Raw 264.7 cells. Further evidence supporting anti-cancer effects of GFPL was its significant prolongment of the survival of B16F10 cancer cell-implanted mice. These results suggest that the GFPL may be a candidate for cancer prevention and treatment through immune activation and anti-angiogenic effects by enriching Rg3, Rh1 and Rh2.