• Title/Summary/Keyword: Ginsenoside $Rf_{2}$

Search Result 133, Processing Time 0.021 seconds

Effects of Ginsenosides and Their Metabolites on Voltage-dependent Ca2+ Channel Subtypes

  • Lee, Jun-Ho;Jeong, Sang Min;Kim, Jong-Hoon;Lee, Byung-Hwan;Yoon, In-Soo;Lee, Joon-Hee;Choi, Sun-Hye;Lee, Sang-Mok;Park, Yong-Sun;Lee, Jung-Ha;Kim, Sung Soo;Kim, Hyoung-Chun;Lee, Boo-Yong;Nah, Seung-Yeol
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.52-62
    • /
    • 2006
  • In previous reports we demonstrated that ginsenosides, active ingredients of Panax ginseng, affect some subsets of voltage-dependent $Ca^{2+}$ channels in neuronal cells expressed in Xenopus laevis oocytes. However, the major component(s) of ginseng that affect cloned $Ca^{2+}$ channel subtypes such as ${\alpha}_{1C}$(L)-, ${\alpha}_{1B}$(N)-, ${\alpha}_{1A}$(P/Q)-, ${\alpha}_{1E}$(R)- and ${\alpha}_{1G}$(T) have not been identified. Here, we used the two-microelectrode voltage clamp technique to characterize the effects of ginsenosides and ginsenoside metabolites on $Ba^{2+}$ currents ($I_{Ba}$) in Xenopus oocytes expressing five different $Ca^{2+}$ channel subtypes. Exposure to ginseng total saponins (GTS) induced voltage-dependent, dose-dependent and reversible inhibition of the five channel subtypes, with particularly strong inhibition of the ${\alpha}_{1G}$-type. Of the various ginsenosides, $Rb_1$, Rc, Re, Rf, $Rg_1$, $Rg_3$, and $Rh_2$, ginsenoside $Rg_3$ also inhibited all five channel subtypes and ginsenoside $Rh_2$ had most effect on the ${\alpha}_{1C}$- and ${\alpha}_{1E}$-type $Ca^{2+}$ channels. Compound K (CK), a protopanaxadiol ginsenoside metabolite, strongly inhibited only the ${\alpha}_{1G}$-type of $Ca^{2+}$ channel, whereas M4, a protopanaxatriol ginsenoside metabolite, had almost no effect on any of the channels. $Rg_3$, $Rh_2$, and CK shifted the steady-state activation curves but not the inactivation curves in the depolarizing direction in the ${\alpha}_{1B}$- and ${\alpha}_{1A}$-types. These results reveal that $Rg_3$, $Rh_2$ and CK are the major inhibitors of $Ca^{2+}$ channels in Panax ginseng, and that they show some $Ca^{2+}$ channel selectivity.

Agronomic Characteristics and Chemical Component of Hybrid between Panax ginseng C. A. Meyer and Panax quinquefolius L. (고려인삼과 미국삼 종간잡종의 형질 및 성분특성)

  • Chung, Youl-Young;Chung, Chan-Moon;Jo, Jae-Seong
    • Journal of Ginseng Research
    • /
    • v.27 no.4
    • /
    • pp.183-187
    • /
    • 2003
  • This study was carried out to ascertain the basic information on characteristics of Korean Ginseng(Panax ginseng) and American ginseng(Panax quinquefolius), F$_1$ hybrids. Interspecies hybrids between Panax ginseng and Panax quinquefolius were examined morphological characteristics, rusty root incidence, and contents of effective ingredients such as ginsenosides. The summarized results are as follows. In Panax ginseng, rusty root incidence tended to increase with age of ginseng, but there was no difference in the incidence among ginseng ages and cultivation years in Panax quinquefolius and F$_1$ hybrid. The interspecies hybrid of panax ginseng and Panax quinquefolius flowered later than the Panax ginseng, but earlier than the Panax quinquefolius. As for the characteristics of ginseng root, Panax quinquefolius seedling was better than cv. Panax ginseng, as the former had longer and heavier seedling root than the latter. Ginsenosides of the hybrid F$_1$ showed intermediate value in amounts of Rb$_1$, Rb$_2$, Rc and Rd which were detected as in Panax gineng and Panax quinquefolius. The amount of Re of the hybrid was higher, but that of Rg$_1$ and Rg$_2$ in main and branch roots was lower compared with its parents. Rf was 0.14% and 0.20% in main and branch roots of Panax ginseng, respectively; however, no Rf was detected in Panax quinquefolius and in the hybrid F$_1$. This suggests there may be remarkable difference in Rf content among the ginseng species.

Simultaneous Quantification of 13 Ginsenosides by LC-MS/MS and its Application in Diverse Ginseng Extracts

  • Jo, Jung Jae;Cho, Pil Joung;Lee, Sangkyu
    • Mass Spectrometry Letters
    • /
    • v.9 no.2
    • /
    • pp.41-45
    • /
    • 2018
  • Ginseng (Panax ginseng Meyer) has been used as traditional herbal drug in Asian countries. Ginsenosides are major components having pharmacological and biological efficacy like anti-inflammatory, anti-diabetic and anti-tumor effects. To control the quality of the components in diverse ginseng products, we developed a new quantitative method using LC-MS/MS for 13 ginsenosides; Rb1, Rb2, Rc, Rd, Re, Rf, 20(S)-Rh1, 20(S)-Rh2, Rg1, 20(S)-Rg3, F1, F2, and compound K. This method was successfully validated for linearity, precision, and accuracy. This quantification method applied in four representative ginseng products; fresh ginseng powder, white ginseng powder, red ginseng extract powder, and red ginseng extract. Here the amounts of the 13 ginsenosides in the various type of ginseng samples could be analyzed simultaneously and expected to be suitable for quality control of ginseng products.

Growth and Ginsenosides Production of Hairy Root (Panax ginseng C.A. Meyer) via Light Energy (인삼 모상근의 성장 및 Ginsenosides 생성에 미치는 광의 효과)

  • 양덕조;최혜연
    • Journal of Ginseng Research
    • /
    • v.20 no.3
    • /
    • pp.318-324
    • /
    • 1996
  • The effects of light on the growth and ginsenosides production were examined in the hairy roots of Panax ginsen C.A. Meyer induced by Agrobacterium rhizogines A4. The 9rowth of ginseng hairy roots in 1/2MS liquid medium was significantly decreased with an increment of light intensity (1,000~7,000 lux). The growth of hairy roots under 7,000 lux condition was decreased at 17% compared to the dark condition. The production of 7 ginsenosides in hairy root was very high in 3,500 lux condition. The production of ginsenoside-Rg, and Rf increased 3.3 and, 2.4 times respectively as compared to dark condition. The growth of hairy roots was inhibited by blue light, while ginsenosides production was increased. The sucrose demands of hairy roots was examined in light condition(3,500 lux). The growth of hairy roots in 1/2MS liquid medium with various sucrose concentrations(1~4%) was high in IVp sucrose, while ginsenosides production was high in 3% sucrose condition. The growth and ginsenosides production were high when hairy roots were cultured in dark condition for 1 week and then transferred to light condition(3,500 lux) for 4 weeks. It is suggested that ginsenosides production could be accelerated by light intensity of specific wavelength in cultures of ginseng hairy roots.

  • PDF

Antiviral activity of ginsenosides against coxsackievirus B3, enterovirus 71, and human rhinovirus 3

  • Song, Jae-Hyoung;Choi, Hwa-Jung;Song, Hyuk-Hwan;Hong, Eun-Hye;Lee, Bo-Ra;Oh, Sei-Ryang;Choi, Kwangman;Yeo, Sang-Gu;Lee, Yong-Pyo;Cho, Sungchan;Ko, Hyun-Jeong
    • Journal of Ginseng Research
    • /
    • v.38 no.3
    • /
    • pp.173-179
    • /
    • 2014
  • Background: Ginsenosides are the major components responsible for the biochemical and pharmacological actions of ginseng, and have been shown to have various biological activities. In this study, we investigated the antiviral activities of seven ginsenosides [protopanaxatriol (PT) type: Re, Rf, and Rg2; protopanaxadiol (PD) type: Rb1, Rb2, Rc, and Rd)] against coxsackievirus B3 (CVB3), enterovirus 71 (EV71), and human rhinovirus 3 (HRV3). Methods: Assays of antiviral activity and cytotoxicity were evaluated by the sulforhodamine B method using the cytopathic effect (CPE) reduction assay. Results: The antiviral assays demonstrated that, of the seven ginsenosides, the PT-type ginsenosides (Re, Rf, and Rg2) possess significant antiviral activities against CVB3 and HRV3 at a concentration of $100{\mu}g/mL$. Among the PT-type ginsenosides, only ginsenoside Rg2 showed significant anti-EV71 activity with no cytotoxicity to cells at $100{\mu}g/mL$. The PD-type ginsenosides (Rb1, Rb2, Rc, and Rd), by contrast, did not show any significant antiviral activity against CVB3, EV71, and HRV3, and exhibited cytotoxic effects to virus-infected cells. Notably, the antiviral efficacies of PT-type ginsenosides were comparable to those of ribavirin, a commonly used antiviral drug. Conclusion: Collectively, our findings suggest that the ginsenosides Re, Rf, and Rg2 have the potential to be effective in the treatment of CVB3, EV71, and HRV3 infection.

The Inhibition of Epileptogenesis During Status Epilepticus by Ginsenosides of Korean Red Ginseng and Ginseng Cell Culture (Dan25)

  • N.E., Chepurnova;Park, Jin-Kyu;O.M., Redkozubova;A.A., Pravdukhina;K.R., Abbasova;E.V., Buzinova;A.A., Mirina;D.A., Chepurnova;A.A., Dubina;U.A., Pirogov;M., De Curtis;L., Uva;S.A., Chepurnov
    • Journal of Ginseng Research
    • /
    • v.31 no.3
    • /
    • pp.159-174
    • /
    • 2007
  • Pharmacology of Korean Red ginseng gives us unique possibility to develop new class of antiepileptic drugs today and to improve one's biological activity. The chemical structures of ginsenosides (GS) have some principal differences from well-known antiepileptic new generation drugs. The antiepileptic effect of GS was also demonstrated in all models of epilepsy in rats (young and adult), which have studied, in all models of epilepsy including status epilepticus (SE), induced by lithium - pilocarpine. In our experiments in rats new evidences on protective effects were exerted as a result of premedication by GS. Pre-treatment of several GS could induce decrease of the seizures severity and brain structural damage (by MRI), neuronal degeneration in hippocampus. Wave nature of severity of motor seizures during convulsive SE was observed during lithium-pilocarpine model of SE in rats (the first increase of seizures was 30 min after the beginning of SE and the second - 90 min after. The efficacy of treatment on SE by ginsenoside as expected was observed after no less 3 weeks by daily GS i.p. administration. It is blocked SE or significantly decrease the severity of seizures during SE. The implication of presented data is that combination of ginsenosides from Korean Red ginseng and ginseng cell culture Dan25 that could be applied for prevention of epileptical status development. However, a development of optimal ratio of different ginsenosides $(Rb_1$ Rc, Rg, Rf,) should consummate in the new antiepileptic drug development.

Effects of Compositions of Saponin Fraction from Korean Red Ginseng in the Relaxation of Rabbit and Rat Corpus Cavernosum (토끼와 흰쥐 음경해면체 이완작용에 미치는 홍삼사포닌 분획별 효과)

  • Choi Young Deuk;Park Jin Ah;Choi Hyung Ki;Nam Ki Yeul
    • Journal of Ginseng Research
    • /
    • v.23 no.1 s.53
    • /
    • pp.13-20
    • /
    • 1999
  • We previously reported that Korean red ginseng (KRG) has a relaxation effect on the smooth muscles of corpus cavernosum via nitric oxide (NO) pathway and calcium and potassium channels. However, it is suggested that the active ingredients of KRG might be different depending on the sources of preparation, and there might be differences in actions for different compositions. We first investigated the composition of KRG saponins according to the extractions of the various sources of KRG, then with these extractions the relaxation effects were evaluated in vitro and hemodynamical in vivo using New Zealand white rabbit and rat corpus cavernosum. The total compositions of ginsenoside $(G-Rb_1,\;-Rb_2,\;-Rc,\;-Rd,\;G-Re,\;-Rf,\;-Rg_1)$ in fractionated KRG saponin designated as TS-1, TS-2, TS-3 were $41\%,\;40\%,\;and\;62\%,$ respectively, and the ratios of PD saponin and PT saponin (PD/PT) were 1,55, 1.72, 2.25, and 2.61, the values of which were statistically significant. In vitro studies using the rabbit corpus cavernosal muscle strips, the KRG saponin relaxed cavernosal strips in a dose-dependent manner, and same results were observed in in vivo studies, that KRG saponin increased the intracavernosal pressure in the rat. There was difference in the efficacy according to fractionation techniques. The differences in the total contents of ginsenosides did not affect relaxation, rather PT saponin content was statistically related to the degree of cavernosal relaxation, and this action presumed to be mediated by NO pathway and calcium and potassium channels. In conclusion, KRG exerts relaxation which is a key step in erection via combination of effects on NO system or calcium and potassium channels. The efficacy of this action is different to the sources of ginseng, which is affected by the different composition of ginsenosides $(G-Rb_1,\;-Rb_2,\;-Rc,\;-Rd,\;G-Re,\;-Rf,\;-Rg_1).$ Thus the further studies on the active ingredients such as minor ginsenosides and non-saponin components of red ginseng with maximum potency should be sought.

  • PDF

Qualify Characteristics of Baechukimchi Added Ginseng during Fermentation Periods (인삼이 첨가된 배추김치의 발효중 품질 특성)

  • Ku, Kyung-Hyung;Lee, Kyung-A;Park, Wan-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.10
    • /
    • pp.1444-1448
    • /
    • 2006
  • This study was investigated for quality characteristics of Baechukimchi with ginseng during fermentation. For Baechukimchi preparation, original ingredients of Baechukimchi and high contents of ginseng were used. In the initial pH and titratable acidity of each samples, ginseng -added Kimchi showed a little higher value than pH 5.48 and 0.25% acidity of the control Kimchi. Ginseng-added Kimchi showed higher values of total microbes $(1.90\times10^6\sim2.93\times10^6)$ and lactic acid bacteria $(2.21\times10^6\sim2.62\times10^6)$ than the control Kimchi. The control Kimchi was total microbes of $1.59\times10^5$ and lactic acid bacteria of $7.60\times10^4$. According to fermentation periods, ginseng-added Kimchi showed decrease of pH and increase of titratable acidity than the control Kimchi, but it. was not different for the microbes between Kimchi samples. In the taste intensity of sensory evaluation, ginseng-added Kimchi was evaluated higher value than the control Kimchi and kept up texture, properties of initial preparation between samples during fermentation periods. In the crude saponin content, raw ginseng was 5.89% by dry basis and it was decreased to 3.74% after fermentation. And the individual ginsenosides content of Re, $Rg_1$, Rf, $Rg_2,\;Rh_1,\;Rb_1,$, Rc, $Rb_2$, Rd, $Rg_3$, but $Rg_3$ were decreased and $Rh_1$ were increased from 16.6 mg%, and 22.2 mg/% to 59.2 mg%, and 39.4 mg%, respectively.

Effects of Ginsenosides on $pp60^{c-src}$ Kinase, Intracellular Calcium and Cell Proliferation in NIH 373 Cells

  • Hong, Hee-Youn;Yoo, Gyurng-Soo;Choi, Jung-Kap
    • Journal of Ginseng Research
    • /
    • v.22 no.2
    • /
    • pp.126-132
    • /
    • 1998
  • In the present study, we examined effects of ginseng saponins (ginsenosides) on pp60c-src protein tyrosine kinase (PTK) activity, intracellular calcium concentration ([$Ca^{2+}$]i), and cell proliferation in NIH3T3 cells. Eight different ginsenosides [ginsenoside-Rb1 (G-$Rb_1$), -$Rb_2$, -Rc, -Rd, -Re, -Rf, -$Rg_1$, -$Rg_2$) and ginseng total saponin (GTS) were used for these experiments. All ginsenosides and GTS tested stimulated the activation of $pp60^{c-src}$ kinase, and especially G-$Rb_1$,-Rd,-$Rg_1$, and -$Rg_1$ showed a higher stimulatory effect than others at 16.7 $\mu\textrm{g}$/ml of ginsenosides with a 18 hr-incubation, increasing the activity by 4.5, 3.5, 3.5, and 3.0-fold, respectively, over that of untreated control. In addition, both G-Rd and -$Rg_2$)Rg2 increased ($Ca^{2+}$), to 202 and 334 nM, respectively, about 2-3-fold above the basal level within 7min at 250 $\mu\textrm{g}$/yml of ginsenosides. The increases of ($Ca^{2+}$), were eliminated by Pretreatment of EGTA, an extracellular calcium chelator, suggtasting that they result from an influx of calcium ion from extracellular medium rather than an efflux from intracellular calcium store, endoplasmic reticulum (ER). All ginsenosides studied enhanced cell proliferation to 1.2-1.4-fold over that of untreated control at 5~250 $\mu\textrm{g}$/ml of concentrations. Interestingly the promotion of cell proliferation by ginsenosides corresponded with the activation of c-src kinase, which is an early step in the mitogenic signaling cascade. Taken together, we suggest that some ginsenosides may lead to cellProliferation via the activation of cellular signal transduction Pathway involving $pp60^{c-src}$ kinase.

  • PDF

Ginseng root-derived exosome-like nanoparticles protect skin from UV irradiation and oxidative stress by suppressing activator protein-1 signaling and limiting the generation of reactive oxygen species

  • Wooram Choi;Jeong Hun Cho;Sang Hee Park;Dong Seon Kim;Hwa Pyoung Lee;Donghyun Kim;Hyun Soo Kim;Ji Hye Kim;Jae Youl Cho
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.211-219
    • /
    • 2024
  • Background: Recently, plant-derived exosome-like nanoparticles (PDENs) have been isolated, and active research was focusing on understanding their properties and functions. In this study, the characteristics and molecular properties of ginseng root-derived exosome-like nanoparticles (GrDENs) were examined in terms of skin protection. Methods: HPLC-MS protocols were used to analyze the ginsenoside contents in GrDENs. To investigate the beneficial effect of GrDENs on skin, HaCaT cells were pre-treated with GrDENs (0-2 × 109 particles/mL), and followed by UVB irradiation or H2O2 exposure. In addition, the antioxidant activity of GrDENs was measured using a fluorescence microscope or flow cytometry. Finally, molecular mechanisms were examined with immunoblotting analysis. Results: GrDENs contained detectable levels of ginsenosides (Re, Rg1, Rb1, Rf, Rg2 (S), Gyp17, Rd, C-Mc1, C-O, and F2). In UVB-irradiated HaCaT cells, GrDENs protected cells from death and reduced ROS production. GrDENs downregulated the mRNA expression of proapoptotic genes, including BAX, caspase-1, -3, -6, -7, and -8 and the ratio of cleaved caspase-8, -9, and -3 in a dose-dependent manner. In addition, GrDENs reduced the mRNA levels of aging-related genes (MMP2 and 3), proinflammatory genes (COX-2 and IL-6), and cellular senescence biomarker p21, possibly by suppressing activator protein-1 signaling. Conclusions: This study demonstrates the protective effects of GrDENs against skin damage caused by UV and oxidative stress, providing new insights into beneficial uses of ginseng. In particular, our results suggest GrDENs as a potential active ingredient in cosmeceuticals to promote skin health.