• Title/Summary/Keyword: Ginsenoside $Rb_1$

Search Result 532, Processing Time 0.029 seconds

인삼과 산양삼, 산삼의 HPLC를 이용한 부위별 성분 분석 비교

  • Han, Young-Ju;Kwon, Ki-Rok;Cha, Bae-Chun;Kwon, Oh-Man
    • Journal of Pharmacopuncture
    • /
    • v.10 no.1 s.22
    • /
    • pp.37-53
    • /
    • 2007
  • Objectives : The aim of this experiments is to provide an objective differentiation of ginseng, Korean and Chinese cultivated wild ginseng, and natural wild ginseng through components analysis of different parts of ginseng. Methods : Comparative analyses of ginsenoside-$Rg_3$, ginsenoside-$Rh_2$, and ginsenosides $Rb_1$ and $Rg_1$ from the root, stem, and leaves of ginseng, Korean and Chinese cultivated wild ginseng, and natural wild ginseng were conducted using HPLC. Results : 1. For content comparison of leaves, ginseng showed highest content of ginsenoside $Rg_1$ than other samples. Natural wild ginseng showed relatively high content of ginsenosides $Rg_1$ and $Rb_1$ than other samples. 2. For content comparison of the stem, ginseng and 10 years old Chinese cultivated wild ginseng didn't contain ginsenoside $Rb_1$. Natural wild ginseng showed higher content of ginsenosides $Rg_1$ and $Rb_1$ than other samples. 3. For content comparison of the root, ginsenoside $Rh_2$ was found only in 5 and 10 years old Korean cultivated wild ginseng. 4. Distribution of contents by the parts of ginseng was similar in ginseng and Chinese cultivated wild ginseng. Conclusions : Above experiment data can be an important indicator for the identification of ginseng, Korean and Chinese cultivated wild ginseng, and natural wild ginseng.

Effect of Processing Methods on the Saponin Contents of Panax ginseng Leaf-Tea (고려인삼엽차의 제조방법에 따른 사포닌 성분의 함량 및 조성)

  • 장현기
    • The Korean Journal of Food And Nutrition
    • /
    • v.16 no.1
    • /
    • pp.46-53
    • /
    • 2003
  • Panax ginseng leaf tea was developed for the functional benefit of health, preference and convenience. The leaves of 4-year-old ginseng were selected in July and August. The ginseng leaf was treated by three methods : heat processed tea(HPT), aged tea(AGT) and hot-air dried tea(DRT). The contents and compositions of their crude saponin of ginseng leaves were measured. 1. The content of crude saponin of HPT was the higher than other treatments. The content of HPT was 18.72∼18.82%, ACT 18.24∼18.29% and DRT 17.02∼17.17%. 2. The harvest time and treatment methods were not affect the composition of ginsenoside in ginseng leaf tea. The ginsenoside-Re was shown the highest value as 1.97∼2.15. And ginsenoside-Rd was 1.48∼1.79, -Rg$_1$ 1.33∼1.58 and -Rb, -Rb$_2$, -Rc in the order. 3. The content of protopanaxadiol(PD) and protopanaxatriol(PT) was shown that DRT was 1.11∼1.13, HPT 1.09~l.12 and AGT 0.92∼1.02. The content of PD and PT were shown similar result at any harvest time. 4. The contents of crude saponin extracted by hot-water at 5 min was the higher ratios in HPT and harvested in July than other treatments. The content of crude saponin of ginseng leaf harvested in July was 15.88% and HPT was 16.88%. The order of contents of ginsenoside were -Re, -Rd, -Rg$_1$, -Rb$_1$, -Rb$_2$, and - Rc. The extraction ratio of crude saponin extracted by the circulated extraction method in 8 hours and 5 min extraction were 81.74∼84.38%. And HPT of ginseng leaf harvested in July was the highest value 84.3% but the extraction ratio of ginsenoside was 78.00~88.13%. But the extraction ratio of ginsenoside was similar trend in all treatments.

Morphological evaluation on the effect of panaxadiol series ginsenosides in irradiated mice (방사선 조사 마우스에서 인삼 panaxadiol계 ginsenosides의 효과에 관한 형태학적 평가)

  • Lee, Hae-june;Kim, Se-ra;Kim, Sung-ho
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.2
    • /
    • pp.179-184
    • /
    • 2004
  • The purpose of the study was to investigate the effect of ginseng saponins (panaxadiol, ginsenoside $Rb_1$, $Rb_2$, Rc, Rd) on jejunal crypt survival, endogenous spleen colony formation and apoptosis in jejunal crypt cells of mice irradiated with gamma-ray. ICR mice were given each saponin (i.p. 50 mg/kg of body weight) at 24 hours before irradiation. The radioprotective effects of saponins were compared with the irradiation control respectively. The jejunal crypts were protected by pretreatment with ginsenoside Rc (p<0.05) and Rd (p<0.05). The spleen colony was increased by pretreatment with panaxadiol (p<0.05) and ginsenoside Rd (p<0.05). And the frequency of radiation induced apoptosis was significantly reduced by pretreatment with panaxadiol (p<0.05), ginsenoside Rb2 (p<0.05), Rc (p<0.05) and Rd (p<0.01). These results suggest that ginsenoside Rc, Rd might have a major radioprotective effect.

Ginsenoside-Rb1 Acts as a Weak Estrogen Receptor Agonist Independent of Ligand Binding.

  • Park, Wan-Kyu;Jungyoon Cho;Lee, Young-Joo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.114-114
    • /
    • 2003
  • Ginseng is a medicinal herb widely used in Asian countries, and its pharmacological effects has been demonstrated in various systems such as cardiovascular, central nervous, and endocrine systems. Its effects are mainly attributed to the ginsenosides. We hypothesize that a component of Panax ginseng, ginsenoside-Rbl, acts by binding to estrogen receptor. We have investigated the estrogenic activity of ginsenoside-Rbl in a transient transfection system using estrogen receptors ${\alpha}$ or ${\beta}$ with estrogen -responsive luciferase plasmids in COS monkey kidney cells. Ginsenoside-Rbl activated both estrogen receptors ${\alpha}$ and ${\beta}$ in a dose-dependent manner (0.5 -100 M ). Activation was inhibited by the specific estrogen receptor antagonist ICI 182,780, indicating that the estrogenic effect of ginsenoside-Rbl is estrogen receptor dependent. Next, we evaluated the ability of ginsenoside-Rbl to induce estrogen-responsive progesterone receptor gene by semi-quantitative RT-PCR assays. MCF-7 cells treated with l7${\beta}$-estradiol or ginsenoside- Rb1 exhibited an increased expression of progesterone receptor mRNA. However, ginsenoside-Rbl failed to displace the specific binding of [3H]17${\beta}$-estradiol to estrogen receptor in MCF-7 cells as examined by whole cell ligand binding assays, suggesting that there is no direct interaction of ginsenoside-Rbl with estrogen receptor. Our results indicate that estrogen-like activity of ginsenoside-Rbl is independent of direct estrogen receptor association.

  • PDF

Biotransformation of Ginsenoside by Lactobacillus brevis THK-D57 Isolated from Kimchi (김치에서 분리한 Lactobacillus brevis THK-D57에 의한 인삼 사포닌의 생물학적 전환)

  • Yi, Eun-Ji;Lee, Jung-Min;Yi, Tae-Hoo;Cho, Seok-Cheol;Park, Yong-Jin;Kook, Moo-Chang
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.3
    • /
    • pp.629-636
    • /
    • 2012
  • Ginsenosides, ginseng saponin, are the principal components responsible for the pharmacological and biological activities of ginseng. In order to improve absorption and biological activities, the biotransformation of major ginsenoside to minor ginsenoside, as the more active compound, is required. In this study, we isolated Lactobacillus brevis THK-D57, which has high ${\beta}$-glycosidase activity, from Kimchi. The major ginsenoside Rb1 was converted to the minor ginsenoside 'compound K' during the fermentation of L. brevis THK-D57. The results propose that the biotransformation pathway to produce compound K is as follows: ginsenoside $Rb_1{\rightarrow}ginsenoside$ $Rd{\rightarrow}ginsenoside$ $F_2{\rightarrow}ginsenoside$ compound K.

Ginsenoside $Rb_1$: the Anti-Ulcer Constituent from the Head of Panax ginseng

  • Jeong, Choon-Sik;Hyun, Jin-Ee;Kim, Yeong-Shik
    • Archives of Pharmacal Research
    • /
    • v.26 no.11
    • /
    • pp.906-911
    • /
    • 2003
  • We previously reported that the butanol (BuOH) fraction of the head of Panax ginseng exhibited gastroprotective activity in peptic and chronic ulcer models. In order to identify the active constituent, an activity-guided isolation of the BuOH faction was conducted with a HCI$.$ethanol-induced gastric lesion model. The BuOH fraction was passed through a silica-gel column using a chloroform-methanol gradient solvent system, and six fractions (frs. 1-6) were obtained. The active fr. 5 was further separated by silica-gel column, to yield 6 subfractions (subfrs. a-f). Subfr. d was composed of ginsenosides Re, Rc and $Rb_1$. The most active constituent was ginsenoside $Rb_1$ ($GRb_1$), a protopanaxadiol glycoside, which was investigated for its anti-ulcer effect. Gastric injury induced by HCI$.$ethanol, indomethacin and pyloric ligation (Shay ulcer) was apparently reduced with oral $GRb_1$ doses of 150 and 300 mg/kg. $GRb_1$ at these dosage significantly increased the amount of mucus secretion in an ethanol-induced model. The anti-ulcer effects were consistent with the result of histological examination. These results suggest that the major active constituent in the head of Panax ginseng is $GRb_1$ and that anti-ulcer effect is produced through an increase in mucus secretion.

Pattern of Molecular Aggregation of Ginsenosides in Aqueous Solution (수용액(水溶液)에서 인삼배당체(人蔘配糖體)의 분자결합양상(分子結合樣相))

  • Park, Hoon;Lee, Mee-Kyoung;Park, Qwi-Hee
    • Applied Biological Chemistry
    • /
    • v.29 no.2
    • /
    • pp.198-206
    • /
    • 1986
  • For the information on micellization at each ginsenoside level aqueous solution of purified saponin of Panax ginseng root was dialyzed through dialysis tubing (MW 12,000) or eluted through Bio-Gel P-2 (MW 200-2,000) and analysed for ginsenosides by high performance liquid chromatography. Ginsenosides can be classified into three groups depending upon molecular aggregation pattern and spatial arrangement of hydrophilic parts in molecule. Group I that is large micelle former(aggregation number: above 10) and one side hydrophilic part (HP) includes $ginsenoside\;Rb_1$, $Rb_2$, Rc and Rd (diols). Group II thai is small micelle former (aggregation number:>10-1) and semi-two sales HP includes $Rg_2$, Rf (triol) and $Rg_3$ (diol). Group III that is no micelle former (aggregation number: 1) and two sides HP includes Re and $Rg_1$ (triol).

  • PDF

Journal of Ginseng ResearchHighly regioselective biotransformation of ginsenoside Rb2 into compound Y and compound K by β-glycosidase purified from Armillaria mellea mycelia

  • Kim, Min-Ji;Upadhyaya, Jitendra;Yoon, Min-Sun;Ryu, Nam Soo;Song, Young Eun;Park, Hee-Won;Kim, Young-Hoi;Kim, Myung-Kon
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.504-511
    • /
    • 2018
  • Background: The biological activities of ginseng saponins (ginsenosides) are associated with type, number, and position of sugar moieties linked to aglycone skeletons. Deglycosylated minor ginsenosides are known to be more biologically active than major ginsenosides. Accordingly, the deglycosylation of major ginsenosides can provide the multibioactive effects of ginsenosides. The purpose of this study was to transform ginsenoside Rb2, one of the protopanaxadiol-type major ginsenosides, into minor ginsenosides using ${\beta}$-glycosidase (BG-1) purified from Armillaria mellea mycelium. Methods: Ginsenoside Rb2 was hydrolyzed by using BG-1; the hydrolytic properties of Rb2 by BG-1 were also characterized. In addition, the influence of reaction conditions such as reaction time, pH, and temperature, and transformation pathways of Rb2, Rd, F2, compound O (C-O), and C-Y by treatment with BG-1 were investigated. Results: BG-1 first hydrolyzes 3-O-outer ${\beta}$-$\text\tiny{D}$-glucoside of Rb2, then 3-O-${\beta}$-$\text\tiny{D}$-glucoside of C-O into C-Y. C-Y was gradually converted into C-K with a prolonged reaction time, but the pathway of Rb2 ${\rightarrow}$ Rd ${\rightarrow}$ F2 ${\rightarrow}$ C-K was not observed. The optimum reaction conditions for C-Y and C-K formation from Rb2 by BG-1 were pH 4.0-4.5, temperature $45-60^{\circ}C$, and reaction time 72-96 h. Conclusion: ${\beta}$-Glycosidase purified from A. mellea mycelium can be efficiently used to transform Rb2 into C-Y and C-K. To our best knowledge, this is the first result of transformation from Rb2 into C-Y and C-K by basidiomycete mushroom enzyme.

The Effective Preparation of Protopanaxadiol Saponin Enriched Fraction from Ginseng using the Ultrafiltration

  • Seol, Su Yeon;Kim, Bo Ram;Hong, Se Chul;Yoo, Ji Hyun;Lee, Kun Hee;Lee, Ho Joo;Park, Jong Dae;Pyo, Mi Kyung
    • Natural Product Sciences
    • /
    • v.20 no.1
    • /
    • pp.58-64
    • /
    • 2014
  • In this study, edible protopanaxadiol saponin enriched fraction were prepared by ultrafiltration (UF). Ginseng extract was prepared from mixtures of ginseng main root and rootlet (root: rootlet = 4 : 6). UF system was used the four-piston Diaphragm pump equipped with 5 kDa pore size Hydrosart Cassette made by regenerated cellulose acetate (CA) or 3 kDa pore size Hollow Fiber cartridge made by polyethersulfone (PES). Total ginsenoside contents of concentrated fraction by UF system was found to higher, compared to before those of untreated method. Especially, processing of UF showed the increase of PPD-type ginsenoside, while PPT-type ginsenoside was gradually decreased by both 3 kDa and 5 kDa membrane. After removal of 80% water by the 5 kDa Hydrosart Cassette and by 3 kDa Hollow Fiber cartridge, ginsenoside Rb1 content was higher 37.2 mg/g and 25.3 mg/g than 20.8 mg/g in untreated process. The ratio of Rb1 to Rg1 (Rb1/Rg1) and PPD- to PPT- type ginsenoside (PPD/PPT) were higher in inner fluid of ginseng extract after UF by 3 kDa cartridge (47.1 and 23.5, respectively) and 5 kDa Cassette (25.3 and 11.9, respectively) than those of before UF (5.7 and 3.7, respectively). PPD-type ginsenoside enriched fraction by UF system could be developed as a new ginseng material in food and cosmetic industrials.

Ginsenoside Rb1 exerts neuroprotective effects through regulation of Lactobacillus helveticus abundance and GABAA receptor expression

  • Chen, Huimin;Shen, Jiajia;Li, Haofeng;Zheng, Xiao;Kang, Dian;Xu, Yangfan;Chen, Chong;Guo, Huimin;Xie, Lin;Wang, Guangji;Liang, Yan
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.86-95
    • /
    • 2020
  • Background: Ginsenoside Rb1 (Rb1), one of the most abundant protopanaxadiol-type ginsenosides, exerts excellent neuroprotective effects even though it has low intracephalic exposure. Purpose: The present study aimed to elucidate the apparent contradiction between the pharmacokinetics and pharmacodynamics of Rb1 by studying the mechanisms underlying neuroprotective effects of Rb1 based on regulation of microflora. Methods: A pseudo germ-free (PGF) rat model was established, and neuroprotective effects of Rb1 were compared between conventional and PGF rats. The relative abundances of common probiotics were quantified to reveal the authentic probiotics that dominate in the neuroprotection of Rb1. The expressions of the gamma-aminobutyric acid (GABA) receptors, including GABAA receptors (α2, β2, and γ2) and GABAB receptors (1b and 2), in the normal, ischemia/reperfusion (I/R), and I/R+Rb1 rat hippocampus and striatum were assessed to reveal the neuroprotective mechanism of Rb1. Results: The results showed that microbiota plays a key role in neuroprotection of Rb1. The relative abundance of Lactobacillus helveticus (Lac.H) increased 15.26 fold after pretreatment with Rb1. I/R surgery induced effects on infarct size, neurological deficit score, and proinflammatory cytokines (IL-1β, IL-6, and TNF-α) were prevented by colonizing the rat gastrointestinal tract with Lac.H (1 × 109 CFU) by gavage 15 d before I/R surgery. Both Rb1 and Lac.H upregulated expression of GABA receptors in I/R rats. Coadministration of a GABAA receptor antagonist significantly attenuated neuroprotective effects of Rb1 and Lac.H. Conclusion: In sum, Rb1 exerts neuroprotective effects by regulating Lac.H and GABA receptors rather than through direct distribution to the target sites.