• Title/Summary/Keyword: Ginseng plants

Search Result 571, Processing Time 0.023 seconds

Effect of Controlled Light Environment on the Growth and Ginsenoside Content of Panax ginseng C. A. Meyer (광환경 조절이 인삼의 생육과 진세노사이드 함량에 미치는 영향)

  • Jang, In Bae;Yu, Jin;Kweon, Ki Bum;Suh, Su Jeoung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.4
    • /
    • pp.277-283
    • /
    • 2016
  • Background: The photosynthetic efficiency cool-season, semi-shade ginseng is normal at low morning temperatures, but drops at high afternoon temperatures. Therefore, optimal plant performance would be ensured if it were possible to control daily light transmission rates (LTR). Methods and Results: Plants were grown in a controlled light environment that replicated 11 AM conditions and comparatively analyzed against plant grown under normal conditions. Growth in the controlled light environment resulted in a 2.81 fold increase in photosynthetic efficiency with no change in chlorophyll content, although LTR were high due to low morning temperatures. Increased aerial plant growth was observed in the ginseng plants adapted to the controlled light environment, which in turn influenced root weight. An 81% increase in fresh root weight (33.3 g per plant on average) was observed in 4-year-old ginseng plants grown in controlled light environment compared to the plants grown following conventional practices (18.4 g per plant on average). With regard to the inorganic composition of leaves of 4-year-old ginseng plants grown in controlled light environment, an increased in Fe content was observed, while Mn and Zn content decreased, and total ginsenoside content of roots increased 2.37 fold. Conclusions: Growth of ginseng under a favorable light environment, such as the condition which exist naturally at 11 AM and are suitable for the plant's photosynthetic activity creates the possibility of large scale production, excellent-quality ginseng.

Growth Characteristics of Ginseng Seedling Transplanting by Self Soil Nusery, Nursery or Hydroponic Culture on Main Field (토직, 상토 및 양액육묘에 의해 생산된 묘삼의 본포 이식 후 생장특성)

  • Park, Hong Woo;Song, Jeong Ho;Kwon, Ki Bum;Lee, Ueong Ho;Son, Ho Jun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.4
    • /
    • pp.238-243
    • /
    • 2017
  • Background: The production method of ginseng seedlings for ginseng cultivation is very important to ensure healthy rooting system as well as high quality, and yield of the resultant plants. This study was carried out to compare the growth characteristics of 2-year-old ginseng plants that were produced from seedlings grown in self soil nursery (SSN), nursery soil (NS) or hydroponic culture (HC). Methods and Results: The shading prop used was composed of four-layered 4 polyethylene (blue 3 + black 1) shade screen. The management of main field was done by inserting oil cake (1,200 kg/10 a) and then allowing Sudan grass to grow for a year. Seedling transplantation was carried out on April 6. Root growth was measured on October 25. Root weight was observed to be excellent at 6.0 g, following SSN transplantation. Root length was 21.2 cm for HC seedlings, but these plants had a physiological disorder (i.e., rusty root), in 83.5% plants of this treatment. The ratio of PD/PT (protopanaxadiol saponins / protopanaxatriol saponins) was higher in NS seedlings. Plant analysis revealed that Fe content was lower in HC seedlings with high rustiness. The growth of 2-years-old ginseng was different following these varying seedling cultivation methods, but seedlings from NS were not different from those grown in SSN. Conclusions: For the propagation of 2-year-old ginseng plants, NS seedlings may be a good substitute for SSN seedlings.

Effects of Vesicular-Arbuscular Mycorrhizae on The Growth of American Ginseng (V. A. Mycorrhizae가 미국삼의 생육에 미치는 영향)

  • Thomas, S.C.Li
    • Journal of Ginseng Research
    • /
    • v.19 no.1
    • /
    • pp.73-76
    • /
    • 1995
  • Newly sprouted American ginseng (Panax quinquefolium L.) seedlings were transplanted to forest pots with mycorrhizae-infested soil and grown in screenhouse for 2 years. Growth patterns, mortality rate and fresh root weight were investigated. Plants in VAM soil had lower mortality rales than control. In soils infested with two species of mycorrhizal fungi (Glomu deseyicola, frappe, Bloss and Merge and G. intraradices, Schenck and Smith), 28-35% of plants produced 3-prongs in the second season and significantly increased fresh root weight by 41 to 43%.

  • PDF

Proteomic analysis of Korean ginseng(Panax ginseng C. A. Meyer) following exposure to salt stress

  • Kim, Sun-Tae;Bae, Dong-Won;Lee, Kyung-Hee;Hwang, Jung-Eun;Bang, Kyong-Hwan;Kim, Young-Chang;Kim, Ok-Tae;Yoo, Nam-Hee;Kang, Kyu-Young;Hyun, Dong-Yun;Lim, Chae-Oh
    • Journal of Plant Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.185-193
    • /
    • 2008
  • We evaluated the response to salt stress of two different ginseng lines, STG3134 and STG3159, which are sensitive and tolerant, respectively, to salt treatment. Plants were exposed to a 5 dS/m salt solution, and chlorophyll fluorescence was measured. STG3134 ginseng was more sensitive than STG3159 to salt stress. To characterize the cellular response to salt stress in the two different lines, changes in protein expression were investigated using a proteomic approach. Total protein was extracted from detached salt-treated leaves of STG3134 and STG3159 ginseng, and then separated by two-dimensional polyacrylamide gel electrophoresis(2-DE). Approximately 468 protein spots were detected by 2-DE and Coommassie brilliant blue staining. Twenty-two proteins were found to be reproducibly up- or down-regulated in response to salt stress. Among these proteins, twelve were identified using MALDI-TOF MS and ESI-Q-TOF and classified into several functional groups: photosynthesis-related proteins(oxygen-evolving enhancer proteins 1 and 2, rubisco and rubisco activase), detoxification proteins(polyphenol oxidase) and defense proteins($\beta$-1,3-glucanase, ribonuclease-like storage protein, and isoflavone reductase-like protein). The protein levels of ribonuclease-like storage protein, which was highly induced in STG3159 ginseng as compared to STG3134, correlated tightly with mRNA transcript levels, as assessed by reverse-transcription(RT)-PCR. Our results indicate that salinity induces changes in the expression levels of specific proteins in the leaves of ginseng plants. These changes may, in turn, playa role in plant adaptation to saline conditions.

Changes in Growth Characteristics, Biological Activity and Active Compound Contents in Ginseng of Different Ages (재배년수에 따른 인삼의 생육특성, 생리활성, 성분의 변화)

  • Moon, Ji Won;Jang, In Bae;Yu, Jin;Jang, In Bok;Seo, Su Jeoung;Lee, Sung Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.6
    • /
    • pp.383-389
    • /
    • 2019
  • Background: Ginseng has been used as a medicine and functional food since ancient times. It is a perennial crop, and its whose commercial valuse increases with growing period and is affected by the atmosphere and soil environment. Methods and Results: In a selected field, we measured air temperature under a shade structure and soil physicochemical properties, and determied plant and root growth as well as ginsenoside and total polyphenol content of one- to five-year-old ginsengs plants. Although air temperature above 30℃ was recored for more than 37 days, no marked growth inhibition of ginseng was detected. Among all soil physicochemical properties, except for pH, were within the allowable range the shortage increases with ginseng years. In five-year-old ginseng, the quantity is about 9.7% higher than the average weight by standard, indicating that is not affected by temperature when grown under a shade structure. Three-year-old ginseng contained the highest total ginsenoside and total polyphenol levels and exhibited the greatest DPPH radical scavenging activity. Conclusions: The total ginsenoside and protopanaxadiol/protopanaxatriol ratio were both low at five-year-old ginseng plants, which was attributed to rapid growth of the root system in five-year-oid plants. There were no significant differences in total polyphenol content and antioxidant activity between.

Studies on the Optimum Light Intensity for Growth of Punux ginseng ( I ) Effects of Light Intensity on Growth of Shoots and Roots of Ginseng Plants (인삼생육의 최적광량에 관한 연구 제1보. 광도가 인삼의 지상부생육 및 근수량에 미치는 영향)

  • 이종화;이종철
    • Journal of Ginseng Research
    • /
    • v.6 no.1
    • /
    • pp.38-45
    • /
    • 1982
  • To determine the optimum light intensity for growth of ginseng plants, change of temperature, moisture content in son, occurrence alternaria blight, defoliation rate, chlorophyll contents, and growth of shoots and roots were investigated under different light intensity such as 5%, 10%, 20% and 30% light transmittance rare(L.T.R.). The results obtained were as follows. 1. Maximum temperature under the shading was increased as the increase of light intensity, whereas soil moisture content decreased 2. As the increase of light intensity, stem and Peduncle length, leaf area, and chlorophyll contents decreased significantly but length and width of the leaf was not significant, while stem diameter, special leaf weight and chlorophyll a/chl. b ratio increased 3. Stem color was shown dark purp!e as the increase of light intensity. 4. Photosynthesis during the day was highest at 9 A.M. and decreased as time passed in all plots. The means of photouynthesis during the day showed in the order of 20%, 10%, 30%, 5% L.T.R., and optimum light intensity for highest photosxthesis was 18.4% L.T.R. by theoritical equation. 5. It was showed a tendency that alternaria leaf blight of ginseng plants was increased as the increase of light intensity. 6. Defoliation rate of ginseng plants was increased as the increase of light intensity, especially all plants were defoliated by late June without shading. 7. Yield percentage of the rear line was increased as the increase of light intensity. Root weight per plant showed in the order of 20%, 10%, 30%, 5% L.T.R., and optimum light intensity for the best yield was 18.5% L.T.R. by theeritical equation.

  • PDF

Life History, Ginseng Damage and Chemical Control of the Field Slug, Deroceras varsans A, Adams (들민달팽이의 생활사와 인삼의 피해 및 약제 방제)

  • 김기황;오승환
    • Journal of Ginseng Research
    • /
    • v.14 no.3
    • /
    • pp.421-426
    • /
    • 1990
  • Field and laboratory works were conducted to Investigate the life history, ginseng damage and chemical control effect of the field slug, Deroceras varians A. Adams. D. varians laid eggs from April to June, but a small number of eggs were also found from July to September in the field. Most young slugs grew through the slimmer months to maturity by October. overwintered beneath the moist soil surface, and began feeding and egg-laying in the following April. indicating that D varians have a life cycle in a year. Damage of ginseng plants by D. varina occurred mainly from late April to mid May in the 3rd to 5th year ginseng fields with rice-straw mulching. It seems that this damage is caused by the adults in oviposition periods and related to rice-straw mulching of ginseng fields. In the experiment, ethoprop 5% granule and metaldehyde 6% bait showed relatively high effectiveness in the control of D. varians adults. Bordeaux mixture was more effective when the chemical was sprayed after infestation of the slug than before the infestation and when the 6-12 mixture was used.

  • PDF

Phylogenetic Analysis of Artemisia spp. by Morphological Characteristics of Reproductive Organs in Korea (화기형태에 의한 국내 자생쑥의 유연관계 분석)

  • Sung, Jung-Sook;Lee, Jeong-Hoon;Lee, Jei-Wan;Bang, Kyong-Hwan;Yeo, Jun-Hwan;Park, Chun-Geon;Park, Ho-Ki;Seong, Nak-Sul;Moon, Sung-Gi
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.4
    • /
    • pp.218-224
    • /
    • 2008
  • This study was conducted to obtain the basic data for using the Artemisia genetic resources as a medicinal crop. 24 taxa including Artemisia capillaris Thunb. were analyzed by principal component analysis of 25 characters and cluster analysis for classification. In Principal components analysis of individuals of taxa using 25 morphological characters of reproductive organ, the first, the second, the third and the fourth components contributed 44.73%, 16.86%, 8.88%, and 7.07% of the variations, respectively. The cumulative contribution from the first to the fourth principal components was 77.56%. In cluster analysis, taxa of Artemisia L. was seperated 3 group by 25 morphological characters of reproductive organ, but it didn't completely coincident with Kitamura classification.