• Title/Summary/Keyword: Ginseng Saponin

Search Result 963, Processing Time 0.029 seconds

Ginsenoside Rb1 increases macrophage phagocytosis through p38 mitogen-activated protein kinase/Akt pathway

  • Xin, Chun;Quan, Hui;Kim, Joung-Min;Hur, Young-Hoe;Shin, Jae-Yun;Bae, Hong-Beom;Choi, Jeong-Il
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.394-401
    • /
    • 2019
  • Background: Ginsenoside Rb1, a triterpene saponin, is derived from the Panax ginseng root and has potent antiinflammatory activity. In this study, we determined if Rb1 can increase macrophage phagocytosis and elucidated the underlying mechanisms. Methods: To measure macrophage phagocytosis, mouse peritoneal macrophages or RAW 264.7 cells were cultured with fluorescein isothiocyanate-conjugated Escherichia coli, and the phagocytic index was determined by flow cytometry. Western blot analyses were performed. Results: Ginsenoside Rb1 increased macrophage phagocytosis and phosphorylation of p38 mitogenactivated protein kinase (MAPK), but inhibition of p38 MAPK activity with SB203580 decreased the phagocytic ability of macrophages. Rb1 also increased Akt phosphorylation, which was suppressed by LY294002, a phosphoinositide 3-kinase inhibitor. Rb1-induced Akt phosphorylation was inhibited by SB203580, (5Z)-7-oxozeaenol, and small-interfering RNA (siRNA)-mediated knockdown of $p38{\alpha}$ MAPK in macrophages. However, Rb1-induced p38 MAPK phosphorylation was not blocked by LY294002 or siRNA-mediated knockdown of Akt. The inhibition of Akt activation with siRNA or LY294002 also inhibited the Rb1-induced increase in phagocytosis. Rb1 increased macrophage phagocytosis of IgG-opsonized beads but not unopsonized beads. The phosphorylation of p21 activated kinase 1/2 and actin polymerization induced by IgG-opsonized beads and Rb1 were inhibited by SB203580 and LY294002. Intraperitoneal injection of Rb1 increased phosphorylation of p38 MAPK and Akt and the phagocytosis of bacteria in bronchoalveolar cells. Conclusion: These results suggest that ginsenoside Rb1 enhances the phagocytic capacity of macrophages for bacteria via activation of the p38/Akt pathway. Rb1 may be a useful pharmacological adjuvant for the treatment of bacterial infections in clinically relevant conditions.

Compound K, a ginsenoside metabolite, plays an antiinflammatory role in macrophages by targeting the AKT1-mediated signaling pathway

  • Lee, Jeong-Oog;Choi, Eunju;Shin, Kon Kuk;Hong, Yo Han;Kim, Han Gyung;Jeong, Deok;Hossain, Mohammad Amjad;Kim, Hyun Soo;Yi, Young-Su;Kim, Donghyun;Kim, Eunji;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.154-160
    • /
    • 2019
  • Background: Compound K (CK) is an active metabolite of ginseng saponin, ginsenoside Rb1, that has been shown to have ameliorative properties in various diseases. However, its role in inflammation and the underlying mechanisms are poorly understood. In this report, the antiinflammatory role of CK was investigated in macrophage-like cells. Methods: The CK-mediated antiinflammatory mechanism was explored in RAW264.7 and HEK293 cells that were activated by lipopolysaccharide (LPS) or exhibited overexpression of known activation proteins. The mRNA levels of inflammatory genes and the activation levels of target proteins were identified by quantitative and semiquantitative reverse transcription polymerase chain reaction and Western blot analysis. Results: CK significantly inhibited the mRNA expression of inducible nitric oxide synthase and tumor necrosis factor-${\alpha}$ and morphological changes in LPS-activated RAW264.7 cells under noncytotoxic concentrations. CK downregulated the phosphorylation of AKT1, but not AKT2, in LPS-activated RAW264.7 cells. Similarly, CK reduced the AKT1 overexpression-induced expression of aldehyde oxidase 1, interleukin-$1{\beta}$, interferon-${\beta}$, and tumor necrosis factor-${\alpha}$ in a dose-dependent manner. Conclusion: Our results suggest that CK plays an antiinflammatory role during macrophage-mediated inflammatory actions by specifically targeting the AKT1-mediated signaling pathway.

Synergistic anticancer effects of timosaponin AIII and ginsenosides in MG63 human osteosarcoma cells

  • Jung, Okkeun;Lee, Sang Yeol
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.488-495
    • /
    • 2019
  • Background: Timosaponin AIII (TA3) is a steroidal saponin extracted from Anemarrhena asphodeloides. Here, we investigated the anticancer effects of TA3 in MG63 human osteosarcoma cells. TA3 attenuates migration and invasion of MG63 cells via regulations of two matrix metalloproteinases (MMPs), MMP-2 and MMP-9, which are involved with cancer metastasis in various cancer cells. TA3 reduced enzymatic activities and transcriptional expressions of MMP-2 and MMP-9 in MG63 cells. TA3 also inhibited Src, focal adhesion kinase, extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), p38, ${\beta}-catenin$, and cAMP response element binding signaling, which regulate migration and invasion of cells. TA3 induced apoptosis of MG63 cells via regulations of caspase-3, caspase-7, and poly(ADP-ribose) polymerase (PARP). Then, we tested several ginsenosides to be used in combination with TA3 for the synergistic anticancer effects. We found that ginsenosides Rb1 and Rc have synergistic effects on TA3-induced apoptosis in MG63 cells. Methods: We investigated the anticancer effects of TA3 and synergistic effects of various ginseng saponins on TA3-induced apoptosis in MG63 cells. To test antimetastatic effects, we performed wound healing migration assay, Boyden chamber invasion assays, gelatin zymography assay, and Western blot analysis. Annexin V/PI staining apoptosis assay was performed to determine the apoptotic effect of TA3 and ginsenosides. Results: TA3 attenuated migration and invasion of MG63 cells and induced apoptosis of MG63 cells. Ginsenosides Rb1 and Rc showed the synergistic effects on TA3-induced apoptosis in MG63 cells. Conclusions: The results strongly suggest that the combination of TA3 and the two ginsenosides Rb1 and Rc may be a strong candidate for the effective antiosteosarcoma agent.

Nrf2-mediated activation of HO-1 is required in the blocking effect of compound K, a ginseng saponin metabolite, against oxidative stress damage in ARPE-19 human retinal pigment epithelial cells

  • Cheol Park;Hee-Jae Cha;Kyoung-Seob Song;Heui-Soo Kim;EunJin Bang;Hyesook Lee;Cheng-Yun Jin;Gi-Young Kim;Yung Hyun Choi
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.311-318
    • /
    • 2023
  • Background: The beneficial effects of compound K (CK) on different chronic diseases have been shown to be at least related to antioxidant action. Nevertheless, since its antioxidant activity in human retinal pigment epithelial (RPE) cells is still unknown, here we investigated whether CK alleviates oxidative stress-stimulated damage in RPE ARPE-19 cells. Methods: The cytoprotective consequence of CK in hydrogen peroxide (H2O2)-treated cells was evaluated by cell viability, DNA damage, and apoptosis assays. Fluorescence analysis and immunoblotting were performed to investigate the inhibitory action of CK on reactive oxygen species (ROS) production and mitochondrial dysfunction. Results: H2O2-promoted cytotoxicity, oxidative stress, DNA damage, mitochondrial impairment, and apoptosis were significantly attenuated by CK in ARPE-19 cells. Furthermore, nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation level and its shuttling to the nucleus were increased, which was correlated with upregulated activation of heme oxygenase-1 (HO-1). However, zinc protoporphyrin, a blocker of HO-1, significantly abrogated the preventive action of CK in H2O2-treated ARPE-19 cells. Conclusion: This study indicates that activation of Nrf2/HO-1 signaling by CK plays an important role in rescuing ARPE-19 cells from oxidative cellular damage.

Ginsenoside Rk1 inhibits HeLa cell proliferation through an endoplasmic reticulum signaling pathway

  • Qiuyang Li;Hang Sun;Shiwei Liu;Jinxin Tang;Shengnan Liu;Pei Yin;Qianwen Mi;Jingsheng Liu;Lei yu;Yunfeng Bi
    • Journal of Ginseng Research
    • /
    • v.47 no.5
    • /
    • pp.645-653
    • /
    • 2023
  • Background: Changes to work-life balance has increased the incidence of cervical cancer among younger people. A minor ginseng saponin known as ginsenoside Rk1 can inhibit the growth and survival of human cancer cells; however, whether ginsenoside Rk1 inhibits HeLa cell proliferation is unknown. Methods and results: Ginsenoside Rk1 blocked HeLa cells in the G0/G1 phase in a dose-dependent manner and inhibited cell division and proliferation. Ginsenoside Rk1 markedly also activated the apoptotic signaling pathway via caspase 3, PARP, and caspase 6. In addition, ginsenoside Rk1 increased LC3B protein expression, indicating the promotion of the autophagy signaling pathway. Protein processing in the endoplasmic reticulum signaling pathway was downregulated in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, consistent with teal-time quantitative PCR and western blotting that showed YOD1, HSPA4L, DNAJC3, and HSP90AA1 expression levels were dramatically decreased in HeLa cells treated with ginsenoside Rk1, with YOD1 was the most significantly inhibited by ginsenoside Rk1 treatment. Conclusion: These findings indicate that the toxicity of ginsenoside Rk1 in HeLa cells can be explained by the inhibition of protein synthesis in the endoplasmic reticulum and enhanced apoptosis, with YOD1 acting as a potential target for cervical cancer treatment.

Physicochemical Properties of Korean Ginseng Dried with Lower Power and Pulse Microwave (저출력 및 Pulse 마이크로파 건조 후 인삼의 품질 특성)

  • Kum, Jun-Seok;Park, Kwang-Jang;Lee, Chang-Ho;Kim, Yong-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.122-127
    • /
    • 1999
  • Quality changes of Korean ginseng on microwave drying were determined in terms of water activity, crude protein, crude lipid, crude ash, dielectric properties, content of sugar, ginsenoside composion, microstructure. Korean fresh ginseng were subjected to four different processing : 3 min microwave drying and 2 min holding-24 hrs drying (MWI), 5 min microwave drying and 2.5 min holding-24 hrs drying (MW2), 3 min microwave drying and 2 min holding-12 hrs after hot air drying for 12 hrs drying at $45^{\circ}C$ (MWH1), 5 min microwave drying and 2.5 min holding-12 hrs drying after hot air drying for 12 hrs at $45^{\circ}C$ (MWH2), Water content was decreased 14.33% without shrinkage and water activity was 0.57 after microwave drying. Permittivity was increased as water content increased. As temperature increased, permittivity was increased until $40^{\circ}C$ and fast decreased over $40^{\circ}C$. Content of ginsenoside for MW1 and MW2 was higher than that of MWH1 and MWH2. Data of free sugar showed that there was no significant difference in each treatment. The MW2 dried ginseng showed a more compact structure than the MWH2 ginseng.

  • PDF

Quality Characteristics of Red Ginseng Extracts Prepared Using Alkaline Water (알칼리수를 이용한 홍삼 추출물의 품질특성)

  • Jang, Se-Young;Im, Ga-Young;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.16 no.2
    • /
    • pp.172-178
    • /
    • 2009
  • This study investigated the quality characteristics of red ginseng extracts prepared using alkaline water. The principal extract mineral was calcium, at 61.73-180.63 mg%, and alkalinity increased as the ionization minerals concentration rose. Alkaline red ginseng extracts(AKRGEs) 3, 6, and 9 were found to have pH values of 4.9-5.0, to be of 3.03-3.43 degrees of $^{\circ}Brix$, with soluble solid contents of 2.33-2.60%(w/v). Extract 3 was brown in color, thus similar to that of(conventional) red ginseng extract(RGE). The calcium contents and alkalinity levels of AKRGE 6 and AKRGE 9 were approximately 18-29-fold and 5-11-fold higher, respectively, than those of RGE and five commercial samples of red ginseng. AKRGEs showed lower crude saponin contents than did RGE, but ginsenoside contents did not differ significantly between RGE and AKRGEs. The DPPH-assayed free-radical and superoxide radical scavenging activities of AKRGEs were 12-13% and about 20%, respectively, thus similar to those of RGE. In sensory evaluation tests, AKRGE 3 and 6 were less bitter and better in overall quality than was RGE.

Ginsenoside Concentration and Chemical Component as Affected by Harvestin Time of Four-Year Ginseng Root (4년생 인삼의 수확시기에 따른 ginsenoside 및 일반 화학성분의 변화)

  • Kwang-He Kang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.3
    • /
    • pp.216-220
    • /
    • 2002
  • This study was conducted to know the change pattern of chemical components, especially proximate constituents, saponin and free sugars in roots of 4-year ginseng according to different harvesting time, and to find out the optimum harvesting time on the basis of chemical components in fourth year ginseng root. The crude protein content was 20.77% of the highest on the April (shootinzg stage),13.13% of the lowest on the June among all growing stages, and was constant at 17% after the August. But crude oil and fiber contents showed the highest value on the May (flowering stage). The content of total sugars which was the largest constituent among the chemical components in ginseng root was in the range of 60~7(1% during the all growing stages. It showed the highest value of 7l% on the June, but the lowest of 60% on the May. The total free sugar contents was the highest on the April (20.40%), but the lowest on the May (11.89%). The change pattern of sucrose contents (10.96-19.60%) was same as the total sugars contents (11.89-20.40%), on the other hand, the contents of glucose and maltose were not changed significantly during all harvesting times. The contents of crude saponins and total ginsenosides had the value of 7.60% and 4.09% on the May, respectively. That was statistically significant, but the other harvesting times were not. Therefore, on the basis of the only chemical characteristics in the four year-old ginseng root, we suggest that the harvesting on the May at flowering stage was most proper time.

Effect of Sowing Density and Number of Seeds Sown on Panax ginseng C. A. Meyer Seedling Stands under Direct Sowing Cultivation in Blue Plastic Greenhouse (인삼 하우스 직파재배 시 파종입수 및 재식밀도가 입모율 향상에 미치는 영향)

  • Mo, Hwang Sung;Park, Hong Woo;Jang, In Bae;Yu, Jin;Park, Kee Choon;Hyun, Dong Yun;Lee, Eung Ho;Kim, Ki Hong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.6
    • /
    • pp.469-474
    • /
    • 2014
  • This study was performed to investigate the effects of sowing density and number of seeds sown on the emergence rate and growth characters of Panax ginseng C. A. Meyer under direct sowing cultivation in a blue plastic greenhouse. Ginseng seedlings, derived from seeds sown directly at different densities (90, 108, 135, and 162 seeds per $162m^2$), were cultivated in sandy loam soil within a blue plastic greenhouse. In contrast to the emergence rate, which decreased with an increase of sowing density, number of survival plant showed an increasing trend. Interestingly, the emergence and number of survival plant were significantly enhanced when 2 or 3 seeds were sown per hole compared with when one seed was sown per hole. Growth of the aerial parts of ginseng were not markedly influenced by sowing density or the number of seeds sown. However, chlorophyll content (SPAD values) increased with an increase in sowing density. Root parameters, such as root length, diameter, and weight, and the number of lateral roots decreased with an increase in sowing density, but were not noticeably influenced by the number of seeds sown. Total saponin content was the highest in the treatment plot containing 135 seeds. Similarly, the content of each ginsenoside was also tended to be higher in this treatment than in other treatment plots. On the basis of the results obtained in this study, it was possible to determine the optimal sowing density and seed number for the direct sowing cultivation of ginseng in blue plastic greenhouse.

Effect of Microwave Treated-Wild Ginseng on the Quality of Korean Traditional Yakju (마이크로 웨이브로 처리한 산양삼 첨가가 전통 약주의 품질에 미치는 영향)

  • Lee, Dae-Hyoung;Kang, Heui-Yun;Lee, Yong-Seon;Cho, Chang-Hui;Kim, Soon-Jae
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.742-746
    • /
    • 2011
  • To increase the quality of Korean traditional yakju, we prepared seed cultures by fermentation at $20^{\circ}C$ for 2 days after addition of 140% water, 3% nuruk and 1.5% yeast into cooked rice. After the 200% cooked rice, 120% water and 0.08% commercial saccharifying enzyme were added to seed cultures and fermented for 2 days at $20^{\circ}C$, wild ginseng was added and then further fermented for 5 days. Physicochemical properties of traditional yakju were investigated. Ethanol was produced (18.5%) by the addition of 1.2% wild ginseng. However, ethanol content was not increased by addition of microwave treated-wild ginseng and rice (either cooked rice or raw). The traditional yakju obtained by fermentation at $20^{\circ}C$ for 5 days, after 90 sec of microwave treated-wild ginseng was added into main fermentation broth, showed good total acceptability and also contained 791 ppm saponin.