• Title/Summary/Keyword: Ginseng Leaf

Search Result 475, Processing Time 0.025 seconds

Source-Sink Relations in North American Ginseng Seedlings as Influenced by Leaflet Removal

  • T. A., John
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.337-340
    • /
    • 2008
  • Seedlings of North American ginseng (Panax quinquefolius L.) were grown to full canopy establishment and then leaflet or leaf removal at different times applied to determine the effects on plant growth and performance. Leaf removal at 47, 57, 69 and 78 days after seeding resulted in 82.1, 59.8, 41.3 and 29.8% reduction, respectively, in root dry matter (economic yield) ; this indicates that leaf removal during the early root growth period causes greatest reduction in root yield. Removal of 1, 2, and 3 leaflets at 42, 52, 62 and 70 days from seeding reduced root weight at harvest (80 days from seeding) linearly, particularly at earlier removal dates. The perennating bud formed on all roots and was not influenced by treatment. This would suggest that if leaf loss occurs after canopy establishment the plant will re-grow the next year after the obligatory dormancy period.

Correlations among Agronomic Characters of Ginseng Plants (인삼의 각종 주요형질간의 상관관계)

  • Choi, K.T.;Ahn, T.S.;Shin, H.S.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.3
    • /
    • pp.63-67
    • /
    • 1980
  • This study was carried out to seek the visible marker and make it easy to select the individuals or lines which have excellent characters. Ginseng plants of one to five years were used for this study, and agronomic characters, such as stem diameter. stem length, leaf length, leaf width, petiole length. stem weight, leaf weight, number of leaves, number of leaflets, main root length, root length, root diameter and root weight were determined and correlations among them were estimated. Generally, agronomic characters, such as stem diameter, leaf length, leaf width, number of leaves, number of leaflets, leaf weight and stem weight had positive and highly significant correlations with root weight per plant, the character that has great influence on yield.

  • PDF

The anti-hyperglycemic property of different ginseng partitions

  • Xie, Jing-Tian;Wang, Chong-Zhi;Kim, Stephen;Yuan, Chun-Su
    • Advances in Traditional Medicine
    • /
    • v.5 no.1
    • /
    • pp.1-15
    • /
    • 2005
  • Ginseng is a popular medicinal plant highly valued throughout the world. Asian ginseng is one of the most common species of ginseng. It has long occupied a significant position in oriental medicine and has been justified its name as the 'king herb'. As a nutritional supplement, ginseng is an extremely common and popular herbal medicine in the United States and Canada in recent decades. The multiple constituents of ginseng possess equally multifaceted pharmacological actions as demonstrated by numerous studies. Ginseng root and its constituents influenced the central nervous system, endocrine, cardiovascular, gastrointestinal system, sexual, renal organ and immune system, etc. One important action is its anti-hyperglycemic effect. Previous studies on ginseng demonstrate that only the root of ginseng has been used in the treatment of diabetes, while the other parts of ginseng plant were always neglected. Recently, we analyzed the constituents of ginseng berry, leaf and discovered that ginseng berry, leaf extracts and its total ginsenosides have the ability to reduce hyperglycemia and body weight and increase the peripheral glucose utilization in obese or diabetic ob/ob or db/db mice. Our data suggest that all parts of ginseng plant, including root, berry, leaf and stem exhibit potent anti-hyperglycemic and anti-obese effects and may provide an opportunity to develop a novel class of anti-diabetic agents.

Water Physiology of Panax ginseng. 1. Habitat observation. cultural experience, weather factors and characteristics of root and leaf (인삼의 수분생리 1. 자생지관찰.재배 경험.기상요인과 근 및 엽의 특성)

  • Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.4 no.2
    • /
    • pp.197-221
    • /
    • 1980
  • Habitat observation, cultural experience of old and present plantation, weather factors in relation to crop stand and water physiology of root and leaf were reviewed. According to habitat observation ginseng plants love water but plate wit talus well grow at drained place with high moisture content in air and soil while ginseng plants were not found in dry or wet place. According to cultivation experience ginseng plants require abundant water in nursery and main field but most old planters believe that ginseng plaints are draught-loving thus require little water. The experience that rain especially in summer i.e unfavorable might be due to mechanical damage of leaves arid leaf disease infection, or severe leaf fall which is caused by high air temperature and coinsided with rain. According to crop stand observation in relation to weather factors abunsant water increased each root weight but decreased total yield indicating tile increase of missing root rate. Rain in summer was unfavorable too. Though rain in June was favorable for high yield general experience that cloudy day and rain were unfavorable might be due to low light intensity under shade. Present leading planters also do loot consider the importance of water in main field. Water content is higher in top than in root and highest in central portion of root and in stem of top. For seedling the heavier the weight of root is tile higher the water content while it reveries from two years old. Water potential of intact root appeared to be -2.89 bar suggesting high sensitivity to water environment. Under water stress water content severly decreased only in leaf. Water content of leaf appeared to be 78% for optimum, below 72% for functional damage and 68% for perm anent wilting. Transpiration or curs Principally through stomata in lower side of leaf thus contribution of upper side transpiration decreased with the increase of intensity. Transpiration is greater in the leaves grown under high light intensity. Thus water content is lower with high light inte nsity under field condition indicating that light is probable cause of water stress in field. Transpiration reached maximum at 10K1ut The decrease of transpiration at higher temperature seems to be due to the decrease of stomata aperture caused by water stress. Severe decrease of photosynthesis under water stress seems to be principally due to functional damage which is not caused by high temperature and Partly due to poor CO2 supply. Water potential of leaf appeared to be -16.8 bar suggesting weakness in draught tolerance. Ginseng leaves absorb water under high humidity. Water free space of leaf disc is %mailer than that of soybean leaf and water uptake appears to be more than two steps.

  • PDF

Quality Characteristics of Muffins Added with Ginseng Leaf (인삼 잎(Ginseng leaf)을 첨가한 머핀의 품질 특성)

  • Cheon, Se-Young;Kim, Kyoung-Hee;Yook, Hong-Sun
    • Korean journal of food and cookery science
    • /
    • v.30 no.3
    • /
    • pp.333-339
    • /
    • 2014
  • The purpose of this study was to evaluate the quality properties of muffin added with different concentration (0, 1, 3, and 5%) of ginseng leaves powder, which is discarded in the process of ginseng. Density of muffin was the highest at 1.45 g/mL in control, and pH (7.41) was at the highest level as well. There was no tendency at the bottom and upper dimensions according to addition of ginseng leaf powder. The height and baking loss rate of the muffins increased with increase in the powder concentration, but there were no significant differences. The weight of muffins did not show constant tendency, according to addition ratio of ginseng leaves powder. The degree of lightness and yellowness of muffin decreased as the concentration of the powder increased, whereas no significant difference in the redness was found with increased powder concentration. The factors of hardness and chewiness were higher at the control group and cohesiveness was the highest at 0.65 in 3% group, but springiness and gumminess did notshow significant differences. DPPH free radical scavenging activity of muffins was significantly increased with increasing ginseng leaves powder (p<0.05). For the sensory evaluation in 1% group, the intensity of color, smell, taste, softness, and moistness was the lowest, whereas the overall acceptability score of color, smell, taste, chewiness, and moistness was the highest. Thesensory properties of muffin linearly decreased as the concentration of ginseng leaves powder increased. Taken together, the results of this study suggest that ginseng leaf powder is a good ingredient for increasing the consumer acceptability and functionality of cookies.

A Study on the Improvement of Dietary Protein-efficiency by Supplement of the Panax Ginseng-by-products. (인삼의 부산물을 이용한 식의성 단백질의 효율 향상을 위한 연구)

  • 황우익;이성동
    • Journal of Ginseng Research
    • /
    • v.3 no.1
    • /
    • pp.1-34
    • /
    • 1979
  • Our nation is confronted with the situation that the rice, a principal food, short of some essential amino acids, leads to imbalanced meals insufficient in the nutrient of Protein, to bring many difficulties in the elevation of nutritional state in our nation. While. our country has been produced much amounts of Panax Ginseng roots which has a stimulating effects on the metabolism of protein, lipid and nucleic acids in the body. And the leaf and trunk of Panax Ginseng were also produced a considerable amounts as the by-products. Author believe that these by-products (leaf and trunk) of Panax Ginseng might have some components possessing simillar activity with Panax Ginseng root although the quantity and qualify of the functional components may more or less be different. Therefore, this study was demised to observe the supplemental effect of the Panax Ginseng-by-Products on the dietary protein efficiency and nutritional state of rats. The feeds used for this experiment were rice containing 30% barely, fish four, and the leaf, trunk and small root of the Panax Ginseng, and the contents of the general nutrients including protein, lipid and carbohydrate etc. in each feed were analyzed for the combination of each feed. And, being based on analytical values of Protein in food. fish Pour as Protein source was added were rice containing 30% barely to be include 8.6 to 8.7%, 12%, 15% and 18% of protein. Then 2% of the leaf, trunk or small reef of Panax Ginseng was supplemented into each of above protein diet group, ton 16 kinds of diets were Prepared. The male albino rats from a Pure strain, weighing 70g to 80g. were used for experimental animals. They were maintained with coresponding fist for f and 8 weeks, and the growth rate, consumption of diets and protein, efficiency of feed and Protein in animals were determined. The lipids, proteins and cholesterols in serum and liver were also determined quantitatively after they were sacrificed in coresponding term. The results obtained are summarized as follows: 1. Body weigh of diet group containing 8.6 to 8.7%,12%, and 15% of protein are increased remarkably by supplement of 2% of the leaf or small root of Panax Ginseng in comparison with each of controls. But this tendency could not observed in diet group containing 18eA Proteins. 2. Feed efficiency showed same tendency in comparison with changes of gained body weight. Specially, in each of diets containing 8.7%, 12%, 15% and 18% of Proteins, supplement of the leaf of Panax Ginseng showed the better feed efficiency than supplement of the trunk or small root. 3. In feeding group for 8 weeks, protein efficiency showed worst efficiency in diet containing 18% proteins and showed the best efficiency was the diet group containing 12% Proteins. And the efficiency was improved according to supplement of the leaf of Panax Ginseng. 4. Nitrogen contents in serum and liver did not show large differences each other in all diet groups. But contexts of total cholesterol and 1ipid were decreased markedly in diet groups containing 12%, 15% and 18% of proteins in comparison with diet group containing 8.6% to 8.8% of proteins.

  • PDF

In vitro cytotoxic activity of ginseng leaf/stem extracts obtained by subcritical water extraction

  • Lee, Kyoung Ah;Kim, Kee-Tae;Chang, Pahn-Shik;Paik, Hyun-Dong
    • Journal of Ginseng Research
    • /
    • v.38 no.4
    • /
    • pp.289-292
    • /
    • 2014
  • Ginseng leaf/stem extract produced by subcritical water extraction at high temperature ($190^{\circ}C$) posses higher cytotoxic activity against human cancer cell lines than ethanol extract. Subcritical water extraction can be a great candidate for extraction of functional substance from ginseng leaves/stems.

Investigation on the Photooxidation of Pigment in Leaf-Burning Disease of Panax ginseng 1. Phenomenological observation and analysis on the chlorophyll bleaching phenomenon (인삼 엽소병에서 색소의 광산화작용에 관한 연구 1. Chlorophyll bleaching의 현상학적 연구)

  • Yang, Deok-Jo;Yu, Hui-Su;Yun, Jae-Jun
    • Journal of Ginseng Research
    • /
    • v.11 no.2
    • /
    • pp.91-100
    • /
    • 1987
  • This study was investigated and analyzed the side of phenomenological of the chlorophyll bleaching phenomenon on the leaf burning-disease of the Ginseng (Panax ginseng C.A. Meyer) leaf. Red light (660-700 nm) was confirmed as one which induced the bleaching phenomenon and blue light (400-500 nm) did not at all. Temperature as 1 environmental factor had not any influence on chlorophyll bleaching phenomenon at all. Therefore, simple burning (thermal damage) hypothesis was perfectly ruled out by the result of this study. And, low pH accelerated chlorophyll bleaching velocity. A primary factor of chlorophyll bleaching phenomenon may be peculiar structural difference of the Ginseng leaf compared with other plant.

  • PDF

Development of Fermentation Process of Ginseng Leaf Extraction Probiotic Strain and Characterization of Product Quality (프로바이오틱 균주에 의한 인삼 잎 추출물 발효공정 확립 및 생성물의 품질 특성분석)

  • Hur, Sang-Sun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1213-1223
    • /
    • 2018
  • This study was carried out to investigate extraction efficiency by microwave for extraction of pesticide residues and the bioconversion of ginsenosides of ginseng leaf by using various lactic acid bacteria in order to promote the utilization of ginseng leaf. The hexane extraction by microwave of tolclofos-methyl and azoxystrobin in ginseng leaf was efficient. The optimal condition for extraction of tolclofos-methyl and azoxystrobin in ginseng leaf by microwave was 50 to 95 watts of power supply, 3 minutes of extraction.The gisenosides Rg1 and Rb1 contents have decreased, while the Rh1, Rg3, Rk1 and Rh2 have increased due to fermentation. The ginsenosides Rg3 of the fermented ginseng leaf has increased and the contents were $70.62{\sim}77.61{\mu}g/g$(control $2.77{\mu}g/g$). The total phenolic acid content and electron donating ability of the ginseng leaf have totally decreased after 7 days of fermentation. The total phenolic acid contents of the fermented ginseng leaf with various lactic acid bacteria did not show any tendency as different strains.

Effect of Metalaxyl on Controlling Phytophthoyra Disease of Korea Ginseng (인삼역병에 대한 Metalalryl의 방제효과)

  • 유연현;오승환
    • Journal of Ginseng Research
    • /
    • v.9 no.2
    • /
    • pp.163-169
    • /
    • 1985
  • The efficacy of fungicides was compared for control of root rot as well as leaf blight caused by Phytophthora cactorum on ginseng plants. Growth of P. cactorum in rlitro was completely or highly inhibited by metalaxyl, tetracyclin, captafol, carbendazim, and thiophanate + thiram. In field trials, the disease was significantly reduced not only in the root rot but also in the leaf blight when metalaxyl was applied at 4.17 mg a.i. per plant for soil drenching and 1.25 mg a.i. for foliage application. Also captafol was effective on control of the leaf blight but its effect was inferior to that of metalaxyl. Metalaxyl lost its effectiveness in vivo between the 5th and 7th week after soil wren ching. Phytotoxicity was, however, observed on 2 years old ginseng plants when metalaxyl was drenched at 8 mg a.i. while no phytotoxic symptom was developed on 2 years old ginseng plants at 4k mg a.i. and 3 years old at 16 mg a.i. per plant, respectively.

  • PDF