• 제목/요약/키워드: Gingival fibroblasts

검색결과 180건 처리시간 0.023초

마이크로그루브 상 인간치은섬유아세포의 유전자 발현 분석: DNA microarray 연구 (Regulation of human gingival fibroblast gene expression on microgrooves: A DNA microarray study)

  • 이경호;이성복;안수진;박수정;이석원
    • 대한치과보철학회지
    • /
    • 제55권4호
    • /
    • pp.361-371
    • /
    • 2017
  • 목적: 마이크로그루브 상 인간치은섬유아세포의 유전자발현감식을 DNA microarray를 이용하여 연구하는 것이다. 재료 및 방법: Grade II 티타늄 시편을 이용하여 표면에 마이크로그루브(폭/깊이: $60{\mu}m/10{\mu}m$, E60/10)를 형성하고 불산으로 산에칭하여 실험군으로 사용하였다. 표면처리를 하지 않은 평활한 티타늄 표면(NE0)을 대조군으로 사용하였다. 실험군과 대조군에 인간치은섬유아세포를 배양한 후 total RNA를 추출하였다. Oligonucleotide microarray를 시행하여 실험군과 대조군 간 다양한 유전자 발현량의 변화를 확인하였다. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis를 통해 DNA chip의 발현 결과를 mapping하여 실험 조건에 따른 유전자 발현량의 변화를 pathway 수준에서 파악하였다. 결과: E60/10 마이크로그루브 표면과 NE0 표면에 대한 유전자 발현량 비교분석 결과, NE0 표면에 비하여 E60/10 마이크로그루브 표면에서 1.5배 이상 유의한 발현 차이를 보인 유전자는 123개, 2배 이상 유의한 발현 차이를 보인 유전자는 19개였다. 실험 조건에 따른 유전자 발현량의 변화를 KEGG pathway analysis를 통하여 확인하였고, 다양한 유전자 발현 결과들 중 대표적인 세포접착, 증식, 활성 관련 세포신호전달을 규명하였다. 결론: 마이크로그루브 표면은 다양한 유전자 발현 변화를 유도하고 관련 세포신호 전달을 유도한다. 본 연구의 결과에 따라서, 마이크로그루브는 유전자 발현 변화 및 세포신호 전달 활성화 등을 통한 세포활성도 증진을 필요로 하는 다양한 생체재료들의 표면으로 사용될 수 있다.

Nicotine과 NNK가 치은 섬유아세포에 미치는 영향 (The Effects of Nicotine and NNK on gingival fibroblast)

  • 황치훈;박미영;박광균;최성호;조규성;김종관;채중규
    • Journal of Periodontal and Implant Science
    • /
    • 제28권4호
    • /
    • pp.703-721
    • /
    • 1998
  • 본 실험에서는 치주질환 발병에 위험인자이고 창상치유에 위해한 영향을 미치는 흡연이 치주조직에 미치는 반응을 규명하기 위해 치은 섬유아세포의 중요한 기능인 교원질 합성과 분비된 단백질 분해에 영향을 주는 효소활성도를 중심으로 Nicotine과 NNK가 이 세포에 미치는 영향을 관찰하고 또한Nicotine이 NNK로 대사되어 작용을 나타내는 것인지, Nicotine과 NNK가 서로 다른 경로를 통하여 치은 섬유아 세포에 영향을 주는지를 규명하고자 이들 화합물의 돌연변이성 실험, 세포 증식을 보기위한 MTT test와 교원질과 collagenase의 mRNA 수준 및 교원질 분해 효소의 효소활성들을 실험하여 다음과 같은 결과를 얻었다. 1. Nicotine은 대사 활성계의 존재 여부와 상관없이 돌연변이성을 나타내지 않았고 NNK 의 경우에는 그 자체로는 돌연변이성이 없었으나, 대사활성계가 존재하는 경우에 농도의존적으로 돌연변이성을 나타내었다. 2. 증식능 실험에서 흡연자의 세포증식능은 비흡연자에 비해 감소되었다. 3. 비흡연자의 치은 섬유아세포에 Nicotine 과 NNK를 처리한 경우에 대조군에 비해농도 의존적으로 세포 증식능이 감소되었으며, 고농도에서 Nicotine의 경우 세포 독성을 나타내었으나, NNK는 세포독성을 나타내지 않았다. 4. 교원질 분자의 mRNA 수준에 대한 Nicotine의 효과는 proa1과 pro ${\alpha}2$ 모두에 영향을 주지 않았고, NNK는 pro ${\alpha}1$의 경우에는 감소하였으나, proa2에는 영향을 주지 않았다. 5. Collagenase의 mRNA 수준에 대한 효과에서 Nicotine은 없었으나 NNK는 감소하였다. 6. 교원질 분해 효소에 대한 Nicotine과 NNK의 효과는 I형 교원질의 분해 효소를 알기 위한 collagenase 효소 활성의 경우에는 효과가 모두 증가되었으나, IV형 교원질의 분해 효소인 gelatinase 효소 활성에는 영향을 주지 않았다. 또한 흡연자의 collagenase 효소활성은 비흡연자의 치은 섬유아세포에 Nicotine이나 NNK를 처리한 경우와 비슷한 수준으로 증가되었다. 이상의 결과로 보아 Nicotine과 NNK는 모두 치은 섬유아세포에 영향을 주어 교원질의 양을 감소시키며, 그 기전은 서로 다른 경로를 통하여 일어나는 것으로 사료된다.

  • PDF

Effect of laser-dimpled titanium surfaces on attachment of epithelial-like cells and fibroblasts

  • Lee, Dong-Woon;Kim, Jae-Gu;Kim, Meyoung-Kon;Ansari, Sahar;Moshaverinia, Alireza;Choi, Seong-Ho;Ryu, Jae-Jun
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권2호
    • /
    • pp.138-145
    • /
    • 2015
  • PURPOSE. The objective of this study was to conduct an in vitro comparative evaluation of polished and laser-dimpled titanium (Ti) surfaces to determine whether either surface has an advantage in promoting the attachment of epithelial-like cells and fibroblast to Ti. MATERIALS AND METHODS. Forty-eight coin-shaped samples of commercially pure, grade 4 Ti plates were used in this study. These discs were cleaned to a surface roughness (Ra: roughness centerline average) of 180 nm by polishing and were divided into three groups: SM (n=16) had no dimples and served as the control, SM15 (n=16) had $5-{\mu}m$ dimples at $10-{\mu}m$ intervals, and SM30 (n=16) had $5-{\mu}m$ dimples at $25-{\mu}m$ intervals in a $2{\times}4mm^2$ area at the center of the disc. Human gingival squamous cell carcinoma cells (YD-38) and human lung fibroblasts (MRC-5) were cultured and used in cell proliferation assays, adhesion assays, immunofluorescent staining of adhesion proteins, and morphological analysis by SEM. The data were analyzed statistically to determine the significance of differences. RESULTS. The adhesion strength of epithelial cells was higher on Ti surfaces with $5-{\mu}m$ laser dimples than on polished Ti surfaces, while the adhesion of fibroblasts was not significantly changed by laser treatment of implant surfaces. However, epithelial cells and fibroblasts around the laser dimples appeared larger and showed increased expression of adhesion proteins. CONCLUSION. These findings demonstrate that laser dimpling may contribute to improving the peri-implant soft tissue barrier. This study provided helpful information for developing the transmucosal surface of the abutment.

치주인대세포와 치은 섬유아세포의 혼합배양이 석회화 결정형성에 미치는 영향 (The Effects Of Calcified Nodule Formation On Co-Cultre Of Periodontal Ligament Cells And Gingival Fibroblasts)

  • 인영미;박준봉;이만섭;권영혁
    • Journal of Periodontal and Implant Science
    • /
    • 제26권1호
    • /
    • pp.89-102
    • /
    • 1996
  • The goal of periodontal therapy is to regenerate the loss of periodontal attachment appratus. Current theories suggest the cells of the periodontium have the capacity, when appropriately triggered, to actively participate in restoring connective tissues, including mineralized tissues. This study was performed to define the hard tissue regeneration effect of periodontal ligament(PDL) cells in vitro and the effect of rate of the composition in gingival fibroblasts(GF) on the hard tissue regeneration capacity of PDL cells. For this study, Cell growth rate, alkaline phosphatase(Al.Pase) levels and the ability to produce mineralized nodules in co-culture of PDL cells and GF were examined. The results were as follows : 1. At 7 and 15 days, Cell growth of co-culture of PDL and GF(50 : 50) was greater than that of PDL cells or GF alone(P>0.05). 2. Measurements of ALPase levels indicated that PDL cells had significantly higher activity when compared with that of co-culture groups and GF only(p<0.05). And, ALPase activity in 10 days was higher than that of 7 days(P>0.05) 3. The tendency of formation of the mineralized nodule were observed dose-depend pattern of PDL cells. There was statistically significant difference among group 1(PDL 100%), 2(PDL 70% : GF 30%), and 3(PDL 50% : GF 50%)(P<0.01). But, there was no difference among group 3, 4(PDL 30% GF 70%), and 5(GF 100%). 4. Also, the number of nodule was greater in co-culture of PDL 70% and GF 30% than in culture of PDL 70%(P<0.05) From the above results, it is assumed that the co-culture of PDL cells and GF stimulates the cell growth, which is not that of PDL cells but GF. And, the activity of ALPase depends on the ratio of PDL cells, and ALPase may relate to the initial phase of nodule formation. Also, it is thought that the calcified nodule formation principally depends on PDL cells, is inhibited by GF, and affected by cell density.

  • PDF

약물함유 생체분해성 차폐막의 생채활성도 및 골조직 유도재생 효과 (Cellular activity and guided bone regenerative effect of drug-loaded biodegradable membranes)

  • 김원경;최상묵;한수부;권영혁;정종평;이승진
    • Journal of Periodontal and Implant Science
    • /
    • 제27권1호
    • /
    • pp.129-150
    • /
    • 1997
  • The purpose of this study was to evaluate the effects of tetracycline(TC}, flurbiprofen, and PDGF-BB loaded biodegradable membranes on the cell-attachment, the activity of loaded PDGF-BB, in vivo release kinetics, and guided bone regenerative potentials. To evaluate the cell attachment to membranes, the number of gingival fibroblasts attached to each membrane(10% TC, 10% flurbiprofen, $200ng/cm^2$ PDGF-BB loaded membranes, drug-unloaded membrane) was counted by coulter counter and the morphologic pattern of attached cells was examined under SEM. To determine whether the activity of loaded PDGF-BB is sustained, the cellular growth and survival rate of gingival fibroblasts was used for both standard PDGF-BB and loaded PDGF-BB. For evaluation of in vivo release kinetics, drug-loaded membranes were implanted on the dorsal skin of the rats. On 1, 3, 7, 10, 14, 21, and 28 days after implantation, the amount of remaining drugs were measured by HPLC assay for TC and flurbiprofen, and by ${\gamma}-scintillation$ counter for $PDGF-BB^{1125}$. For evaluation of guided regenerative potential, the amount of new bone in the calvarial defect(5mm in diameter) of the rat was measured by histomorphometry 1 and 2 weeks after implantation of membranes. The number of cells attached to the PDGF-BB loaded membrane was largest as compared with the other mernbranes.(p< 0.05) The activity of loaded PDGF-BB was not significantly different from the activity of standard PDGF-BB.(p<0.05) After initial burst release of drug during the first 24 hours, drugs were gradually released for 4 weeks. Especially the release rate of PDGF-BB was nearly constant during 4 weeks. PDGF-BB loaded membranes(200, $400ng/cm^2$) were effective in guided bone regeneration as compared with drug-unloaded membrane. These results implicate that drug-loaded biodegradable membranes might be a useful for guided bone regeneration.

  • PDF

Microgrooves on titanium surface affect peri-implant cell adhesion and soft tissue sealing; an in vitro and in vivo study

  • Lee, Hyo-Jung;Lee, Jaden;Lee, Jung-Tae;Hong, Ji-Soo;Lim, Bum-Soon;Park, Hee-Jung;Kim, Young-Kwang;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • 제45권3호
    • /
    • pp.120-126
    • /
    • 2015
  • Purpose: With the significance of stable adhesion of alveolar bone and peri-implant soft tissue on the surface of titanium for successful dental implantation procedure, the purpose of this study was to apply microgrooves on the titanium surface and investigate their effects on peri-implant cells and tissues. Methods: Three types of commercially pure titanium discs were prepared; machined-surface discs (A), sandblasted, large-grit, acid-etched (SLA)-treated discs (B), SLA and microgroove-formed discs (C). After surface topography of the discs was examined by confocal laser scanning electron microscopy, water contact angle and surface energy were measured. Human gingival fibroblasts (hGFs) and murine osteoblastic cells (MC3T3-E1) were seeded onto the titanium discs for immunofluorescence assay of adhesion proteins. Commercially pure titanium implants with microgrooves on the coronal microthreads design were inserted into the edentulous mandible of beagle dogs. After 2 weeks and 6 weeks of implant insertion, the animal subjects were euthanized to confirm peri-implant tissue healing pattern in histologic specimens. Results: Group C presented the lowest water contact angle ($62.89{\pm}5.66{\theta}$), highest surface energy ($45{\pm}1.2mN/m$), and highest surface roughness ($Ra=22.351{\pm}2.766{\mu}m$). The expression of adhesion molecules of hGFs and MC3T30E1 cells was prominent in group C. Titanium implants with microgrooves on the coronal portion showed firm adhesion to peri-implant soft tissue. Conclusions: Microgrooves on the titanium surface promoted the adhesion of gingival fibroblasts and osteoblastic cells, as well as favorable peri-implant soft tissue sealing.

Tissue engineering of dental pulp on type I collagen

  • Lee, Gwang-Hee;Huh, Sung-Yoon;Park, Sang-Hyuk
    • Restorative Dentistry and Endodontics
    • /
    • 제29권4호
    • /
    • pp.370-377
    • /
    • 2004
  • The purpose of this study was to regenerate human dental pulp tissues similar to native pulp tissues. Using the mixture of type I collagen solution, primary cells collected from the different tissues (pulp, gingiva, and skin) and NIH 3T3 ($1{\;}{\times}{\;}10^5{\;}cells/ml/well$) were cultured at 12-well plate at $37^{\circ}C$ for 14 days. Standardized photographs were taken with digital camera during 14 days and the diameter of the contracted collagen gel matrix was measured and statistically analyzed with student t-test. As one of the pulp tissue engineering, normal human dental pulp tissue and collagen gel matrix cultured with dental pulp cells for 14 days were fixed and stained with Hematoxyline & Eosin. According to this study, the results were as follows: 1. The contraction of collagen gel matrix cultured with pulp cells for 14 days was significantly higher than other fibroblasts (gingiva, skin) (p < 0.05), 2. The diameter of collagen gel matrix cultured with pulp cells was reduced to 70.4% after 7 days, and 57.1% after 14 days. 3. The collagen gel without any cells did not contract, whereas the collagen gel cultured with gingiva and skin showed mild contraction after 14 days (88.1% and 87.6% respectively). 4. The contraction of the collagen gel cultured with NIH 3T3 cells after 14 days was higher than those cultured with gingival and skin fibroblasts, but it was not statistically significant (72.1%, p > 0.05). 5. The collagen gel matrix cultured with pulp cells for 14 days showed similar shape with native pulp tissue without blood vessels. This approach may provide a means of engineering a variety of other oral tissue as well and these cell behaviors may provide information needed to establish pulp tissue engineering protocols.

Evaluation of physical property and cytotoxicity of resin infiltrant based on a triethylene glycol dimethacrylate (TEGDMA)

  • Min, Ji-Hyun;Roh, Ji-Yeon;Kim, Ki-Rim
    • 한국치위생학회지
    • /
    • 제19권2호
    • /
    • pp.173-181
    • /
    • 2019
  • Objectives: The resin infiltration technique is a promising alternative therapy for arresting the early dental caries. However, there are very few reports on the safety and biocompatibility of this technique. We evaluated various properties of resin infiltrant (RI) based on a triethylene glycol dimethacrylate (TEGDMA).The water sorption (Wsp) and water solubility (Wsl) was assessed. Additionally, the cytotoxicity of RI against both animal and human fibroblast cell lines was investigated. Methods: The RI of the $Icon^{(R)}$, the first product developed for resin infiltration, is mainly composed of TEGDMA in the resin matrix. The Wsp and Wsl for the RI were measured in accordance with ISO 4049 specifications. Fourier-transform infrared spectroscopy (FTIR) was used for analyzing the polymerization before and after curing of RI. The cytotoxicity of RI against the mouse fibroblasts (L929) and human gingival fibroblasts (hTERT-hNOF) was evaluated using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and the data were analyzed using one-way analysis of variance. Results: Wsp and Wsl of the RI specimens were $53.37{\mu}g/mm^3$ and $10.6{\mu}g/mm^3$, respectively. FTIR analysis revealed a slightly higher degree of curing with longer irradiation time. The degree of conversion for RI was high (80.9%) after 40 seconds of light curing. There was a significant decrease in the viability of L929 and hTERT-hNOF cells at RI extraction solution concentrations above 50%, respectively, compared to that in the negative control (p< 0.05). Conclusions: Even though the RI exhibited positive effect on the early prevention of dental caries, the clinicians should also consider the toxicity of RI on periodontal tissues.

히알룬산젤이 구강 창상 치유에 미치는 영향 (THE EFFECTS OF HYALURONIC ACID GEL ON THE HEALING OF ORAL MUCOSA)

  • 김형진;신창훈;홍종락;최정한
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제33권4호
    • /
    • pp.359-366
    • /
    • 2007
  • Purpose: In spite of various advantages of hyaluronic acid in wound healing, there are few research about wound healing process and period in oral and maxillofacial surgery. So, We evaluated the effects of local application of hyaluronic acid gel on wound healing of the oral mucosa using this animal model. Materials and methods: Young adult New Zealand White rabbits, weighting between 2.5 and 3.0kg, were used. Almost uniform round ulcers could be created on the gingival of the rabbits by chemical injury with acetic acid. In experimental group, hyaluronic acid gel was applied daily until the wounds healed and in control group, ulcer lesion was not any treatment. The lengths of ulcers were measured the longest and shortest axes of the ulcers and calculated the areas of ulcer. For histological examination, specimens were made, and observed under a light microscope. Results: The results showed that the number of fibroblasts, new blood vessels and the epithelial thickness from experimental group was higher than from control group. Hyaluronic acid promoted proliferation of the fibroblast, keratinocytes isolated from gingival tissue of rabbits in vitro. Topical application of hyaluronic acid accelerated healing of ulcers created in rabbits. Conclusion: The hyaluronic acid may be effective for wound healing of oral mucosal lesions.

수종의 성분해성 차폐막의 생체분해도 및 조직 재생유도 능력에 관한 연구 (Evaluation of biodegradability and tissue regenerative potential of synthetic biodegradable membranes)

  • 김동균;구영;이용무;정종평
    • Journal of Periodontal and Implant Science
    • /
    • 제27권1호
    • /
    • pp.151-163
    • /
    • 1997
  • The purpose of this study was to evaluate on the biodegradability, biocompatibility and tissue regenerative capacity of synthetic biodegradable $mernbranes-Resolut^{(R)}$, $Guidor^{(R)}$ and $Biomesh^{(R)}$. To evaluate the cell attachment on the membranes, in vitro, the number of gingival fibroblasts attached to each membrane was counted by hemocytometer. Cytotoxicity test for the membranes was performed by MTT test with gingival fibroblast For evaluation of guided- bone regenerative potential, the amount of new bone formation in the rat calvarial defects(5mm in diameter) beneath the membranes was observed for two weeks and examined of the specimens by Massons trichrome staining. Biodegradability was observed for 2, 4, 8 and 12 weeks after implantation of each materials under the skin of rats and examined the specimens with H & E staining. The number of cell attachment were the greatest in $Biomesh^{(R)}$ and followed by $Resolut^{(R)}$. Cell viability of three membranes was almost similar levels. Biodegradability of $Resolut^{(R)}$ was the highest among three membrane and the potential of guided bone regeneration was the greatest in the $Biomesh^{(R)}$ and $Resolut^{(R)}$ was followed. These results suggested that commercially available biodegradable membranes were non-toxic and highly potential to guided bone regeneration.

  • PDF