• Title/Summary/Keyword: Gimbals

Search Result 40, Processing Time 0.028 seconds

Identification of Dynamic Characteristics of Gimbals for Line-of-Sight Stabilization Using Signal Compression Method (신호 압축법을 이용한 시선안정화 제어용 짐벌의 동특성 규명)

  • Kim, Moon-Sik;Yoo, Gi-Sung;Yun, Jung-Joo;Lee, Min-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.72-78
    • /
    • 2008
  • The line-of-sight(LOS) stabilization system is a precision electro-mechanical gimbals assembly for suppressing vibration due to its environment and tracking the target in a desired direction. This paper describes the design of gimbals system to reject the disturbance and to improve stabilization. The controller consists of a DSP with transducer and actuator interfaces. Unknown parameters of the gimbals are estimated by the signal compression method. The cross-correlation coefficient between the impulse response from the assumed model and the one from model of the gimbals is used to obtain the better estimation. The quasi-impulse response through linear element included in the gimbals could be obtained by the signal compression method. The unknown parameter of the linear element could be estimated as comparing the bode plots for impulse response from gimbals with them from model's response.

Study for verification of Analysis modeling with investigating dynamic characteristic about 2 axies gimbals system (2축 짐벌 안정계 동특성 고찰을 통한 해석 모델링 검증에 관한 연구)

  • Kim, Man-Dal;Lee, Yong-Deog;Kim, Sung-Kuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.180-183
    • /
    • 2005
  • 2 axis gimbals systems are extensively used in various tracking devices for attaining the system's objective. Designers are sometimes passing over the dynamic characteristics of system in vibrating condition In this paper, 2 axis gimbals systems including interface elements is modeled with finite elements. To verify this model, the finite element model is refined by using the experimental model data. The refined model is simulated with I-DEAS and MSC.NATRAN's FRF(Frequency response Function) and RRA(Random vibration Response Analysis) function to get dynamic characteristics of 2 axis gimbals system.

  • PDF

Robust Sliding Mode Controller Design for the Line-of-Sight Stabilization

  • Kim, Moon-Sik;Yun, Jung-Joo;Yoo, Gi-Sung;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.614-619
    • /
    • 2004
  • The line-of-sight (LOS) stabilization system is a precision electro-mechanical gimbals assembly for rejecting vibration to isolate the load from its environment and point toward the target in a desired direction. This paper describes the design of gimbals system to reject the disturbance and to improve stabilization. To generate movement commands for the actuators in the stabilization system, the control system uses a sensor of angular rotation. The controller is a DSP with transducer and actuator interfaces. Unknown parameters of the gimbals are estimated using the signal compression method. The cross-correlation coefficient between the impulse response from the assumed model and the one from model of the gimbals is used to obtain the better estimation. And SMCPE (sliding mode control with perturbation estimation) is used to control the gimbals. SMCPE provides robustness of the control against the modeling deficiencies and unknown disturbances. In order to compare the performance of SMCPE with the classical SMC, a sample test result is presented.

  • PDF

신호 압축법을 이용한 짐벌 시스템의 동특성 규명

  • 김문식;윤정주;유기성;이민철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.190-190
    • /
    • 2004
  • 목표물이 시선의 중심에서 벗어났을 때 모터를 구동시켜 목표물을 시선의 중심에 고정시킴과 동시에 외란으로 인한 카메라의 시선이 흔들리는 것을 막아주는 것을 시선 안정화 시스템이라 한다. 이러한 시스템은 능동 서스펜션 역할출 하는 서보제어기 설계기술이 요구된다. 이론 위하여 본 연구에서는 3축의 회전운동이 가능하고 회전운동에 따른 카메라의 시선의 회전축이 일체화가 되도록 하는 짐벌(gimbals) 구조를 설계한다.(중략)

  • PDF

Development of Gimbals Engine Actuation System for KSR(Korean Sounding Rocket)-III (3단형 과학로켓 김발엔진 구동장치 개발)

  • Min, Byeong-Joo;Park, Moon-Su;Lee, Hee-Joong;Choi, Hyung-Don
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.116-123
    • /
    • 2002
  • This paper describes the development of gimbals engine actuation system for KSR(Korean Sounding Rocket)-III which performs the attitude control of pitch and yaw axes by thrust vector control of liquid propellant gimbals engine. The development requirements of configuration, performance and environment are introduced, and the principles and details of components and system development are discussed. The developed system successfully fulfilled its own performance and environmental evaluation. It will be planned to perform verification of interface and integration compatibility with other related systems, and then mounted on KSR-III as a flight hardware system.

Design of Control Logic, and Experiment for Large Torque CMG (대형 토크 제어모멘트자이로의 제어로직 설계 및 실험)

  • Lee, Jong-Kuk;Song, Tae-Seong;Kang, Jeong-Min;Song, Deok-Ki;Kwon, Jun-Beom;Seo, Joong-Bo;Oh, Hwa-Suk;Cheon, Dong-Ik;Park, Sang-Sup;Lee, Jun-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.4
    • /
    • pp.291-299
    • /
    • 2021
  • This paper presents the control logic for the momentum wheel and gimbals in the CMG system. First, the design of the control logic for the momentum wheel is described in consideration of the power consumption and stability. Second, the design of the control logic for the gimbals considering the resonance of the vibration absorber and stability is explained. Third, the measurement configuration for the force and torque generated by the CMG is described. Fourth, the results of the frequency and time response test of the momentum wheel and gimbals are shown. Last, the measurements of the force and the torque generated through the CMG are explained.

Multi-body Dynamics and Position Control Simulation for 2-Axes Gimbals in Naval Shipboard (함정용 2축 안정화 장치의 다물체 동역학 및 위치 제어 해석)

  • Yun, Chan-Shik;Ku, Ki-Young;Kim, Sang-Ik;Jeon, Hee-Ho;Lee, Seung-Joon;Byun, Gi-Sig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.2
    • /
    • pp.330-340
    • /
    • 2009
  • A naval shipboard inevitably movies in a pitch and roll direction under the influence of wave and wind in the sea. As a result, the shipboard gets in a continuous turning motion back/front and right/left. And the shipboard is also constantly exposed to many different kinds of disturbance signals including the vibrations of various frequencies from the internal equipments and their vibrations, strong waves, and impact from explosion. This paper formulates multi-body dynamic models similar to an actual system and simulates the pitch/roll positions of a 2-axes gimbals with PI controller for consecutive behavior of a naval shipboard including disturbance.

LOS Moving Algorithm Design of Electro-Optical Targeting Pod for Joystick Command (조이스틱 명령에 따른 Electro-Optical Targeting Pod의 LOS 이동 알고리즘 설계)

  • Seo, Hyoungkyu;Park, Jaeyoung;Ahn, Jung-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1395-1400
    • /
    • 2018
  • EO TGP(Electro-Optical Targeting Pod) is an optical tracking system which has various functions such as target tracking and image stabilization and LOS(Line of Sight) change. Especially, it is very important to move the LOS into a interest point for joystick command. When pilot move joystick in order to observe different scene, EO TGP gimbals should be operated properly. Generally, most EOTS just operate corresponding gimbal for joystick command. For example, if pilot input horizontal command in order to observe right hand screen, it just drive azimuth gimbal at any position. But in the screen, the image dosen't move in a horizontal direction because gimbal structure is Euler angle. And image rotation is occurred by elevation gimbal angle. So we need to move Pitch gimbal. So in the paper, we designed LOS moving algorithm which convert LOS command to gimbal velocity command to move LOS properly. We modeled a differential kinematic equation and then change the joystick command into velocity command of gimbals. This algorithm generate velocity command of each gimbal for same horizontal direction command. Finally, we verified performance through MATLAB/Simulink.

A Study on an Image-Based Target Tracking Controller using a Target States Estimator for Airborne Inertially Stabilized Systems (표적상태 추정기를 이용한 항공용 시선 안정화 장치의 영상기반 표적추적 제어기에 관한 연구)

  • Kim, Sungsu;Lee, Buhwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.703-710
    • /
    • 2014
  • An Image-Based Target Tracker maintains LOS(Line Of Sight) to a target by controlling azimuth and elevation gimbals of an ISS(Inertially Stabilized System). Its controller produces the gimbals commands of the ISS using tracking errors provided by an image tracker. The control performance of the target tracker with PI controller generally used for tracking controller is limited because of bandwidth limitation by time delay yielded by image capture and processing of the image tracker. In this paper, tracking controller using target states estimator is proposed which can enhance the tracking performance under the highly dynamic maneuvering conditions of the ISS and the target. Simulation results show that the proposed method can improve the tracking performance than that with only PI controller.