• Title/Summary/Keyword: Gimbal system

Search Result 140, Processing Time 0.022 seconds

An Antenna Tracking Profile Design for Communication with a Ground station

  • Lee, Donghun;Lee, Kyung-Min;Rashed, Mohammed Irfan;Bang, Hyochoong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.282-295
    • /
    • 2013
  • In order to communicate with a ground station, the tracking profile design problem for a directional antenna system is considered. Because the motions of the gimbal angles in the antenna system affect the image quality, the main object is to minimize the motion of the gimbal angles during the satellite's imaging phase. For this goal, parameter optimization problems in the imaging and maneuver phases are formulated separately in the body-frame, and solved sequentially. Also, several mechanical constraints, such as the limitation of the gimbal angle and rate, are considered in the problems. The tracking profiles of the gimbal angles in the maneuver phases are designed with N-th order polynomials, to continuously connect the tracking profiles between two imaging phases. The results confirm that if the vector trace of the desired antenna-pointing vector is within the antenna's beam-width angle, motions of the gimbal angles are not required in the corresponding imaging phase. Also, through numerical examples, it is shown that motion of the gimbal angles in the imaging phase can be minimized by the proposed design process.

Control System Design for a UAV-Mounted Camera Gimbal Subject to Coulomb Friction (쿨롱마찰을 고려한 무인항공기용 영상 김발의 제어시스템 설계)

  • Hwang, Sung-Pil;Park, Jea-Ho;Hong, Sung-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.680-687
    • /
    • 2012
  • One of the frequent problems in the stabilized gimbal system is the rejection of disturbances associated with moving components. Very often such disturbances have non-linear characteristics. In a typical gimbal system, each gimbal and platform are connected by a mutual bearing which induces inevitable friction. Particularly, the non-linear Coulomb friction causes position errors as well as slow responses that lead to unfavorable performance. In this paper, a modified PID controller that is augmented by Coulomb friction estimator is presented. Through constantly estimating the Coulomb friction torque, it is applied to the output of the existing PID controller. The effectiveness of the proposed controller is evaluated through a series of experiments.

Shock Analysis of Gimbal Structure System Including Rubber Vibration Isolator in a Observation Reconnaissance Aircraft (방진 고무를 포함한 항공 감시 정찰용 짐발 구조 시스템의 충격 해석)

  • Lee, Sang Eun;Lee, Tae Won;Kang, Yong Goo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.73-80
    • /
    • 2014
  • A camera module that gathers visual information via aerial observation reconnaissance is equipped inside a gimbal structure. This gimbal structure system must reduce dynamic responses in order to obtain clear images under all circumstances. Among many design specifications for this system, there is MIL-STD-810G as a shock standard. This specification indicates a limitation of the acceleration of the camera module under a base shock excitation on the gimbal structure. The satisfaction of this condition can usually be proved by experiment, because it includes bearings and dynamic isolators made of rubber. Numerical analysis must be proposed for design improvement of the gimbal structure. To achieve this goal, transient response analysis for the base shock excitation was performed using the finite element method. Experimental results were compared with numerical solutions and it is shown that the present method is useful.

Analysis of Relationship between Body and Gimbal Motion Through Experiment of a Single-wheel Robot Based on an Inverse Gyroscopic Effect (외바퀴 로봇의 역자이로 효과에 의한 바디 모션과 김벌 모션의 실험을 통한 관계 분석)

  • Lee, Sang-Deok;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1064-1069
    • /
    • 2015
  • Control Moment Gyro (CMG) has been used as an indirect actuator of a single-wheel robot system GYROBO, developed at Chungnam National University. The flip motion of the gimbal system produces the gyroscopic motion onto the body system while the body motion also produces the gyroscopic motion onto the gimbal system inversely. In this paper, the intuitive equation of the inverse gyroscopic effect is derived as the direct relation between the rate of the body system and the rate of the gimbal system. Experiments on the inverse gyroscopic effect under the chaotically generated disturbance are conducted. Experimental data are approximated by a linear equation using the least square method.

A Robust State Feedback Control of Gimbal System with Parametric Uncertainty (불확실성 파라미터를 포함하는 김발시스템의 상태궤환 강인제어기 설계)

  • Jeon, YeongBeom;Choi, WooSeok;Han, JiHoon;Lee, SungWoo;Kang, TaeHa
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.140-147
    • /
    • 2015
  • In this paper, we propose a state feedback robust controller of 2-axis gimbal system which have bounded parametric uncertainty. The proposed controller is robust against dynamics variations of gimbal system and contains a dynamic compensator in order to improve a steady state error and a transient response. The stability of the closed-loop system is proved by Lyapunov approach. The performance of the proposed method is demonstrated by simulation on a 2-axis gimbal system.

Modeling on an Antenna Flexible Characteristics of a Prototype Gimbal with an Antenna and Major Design Factors to determine a System Bandwidth (원형(Prototype) 안테나가 부착된 짐발의 안테나 유연특성 모델링 및 시스템 대역폭 결정 주요설계인자)

  • Baek Joo Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.743-753
    • /
    • 2005
  • The model of azimuth driving servo system with a flexible antenna in a prototype gimbal has been derived in this work. The validity of the model is verified by comparing the result of the model with that of experiment. It is found that one should consider an antenna as a flexible body in case of modeling the dynamics of the gimbal with an antenna. It is also known that the effect of reducing backlash magnitude for extending the bandwidth in the system with a flexible antenna is smaller than the system with a stiff antenna. It is thought that the model-based design optimization of the gimbal with an antenna will be possible by virtue of the derived model, when a weight reduction and a bandwidth extension are required.

LOS Moving Algorithm Design of Electro-Optical Targeting Pod for Joystick Command (조이스틱 명령에 따른 Electro-Optical Targeting Pod의 LOS 이동 알고리즘 설계)

  • Seo, Hyoungkyu;Park, Jaeyoung;Ahn, Jung-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1395-1400
    • /
    • 2018
  • EO TGP(Electro-Optical Targeting Pod) is an optical tracking system which has various functions such as target tracking and image stabilization and LOS(Line of Sight) change. Especially, it is very important to move the LOS into a interest point for joystick command. When pilot move joystick in order to observe different scene, EO TGP gimbals should be operated properly. Generally, most EOTS just operate corresponding gimbal for joystick command. For example, if pilot input horizontal command in order to observe right hand screen, it just drive azimuth gimbal at any position. But in the screen, the image dosen't move in a horizontal direction because gimbal structure is Euler angle. And image rotation is occurred by elevation gimbal angle. So we need to move Pitch gimbal. So in the paper, we designed LOS moving algorithm which convert LOS command to gimbal velocity command to move LOS properly. We modeled a differential kinematic equation and then change the joystick command into velocity command of gimbals. This algorithm generate velocity command of each gimbal for same horizontal direction command. Finally, we verified performance through MATLAB/Simulink.

Synchronized Control of Active Harmonic Gear System (능동 하모닉 기어구동시스템의 동기화제어)

  • Kim, Sang-Jin;Moon, Deok-Hong;Kim, Young-Bok
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.112-119
    • /
    • 2014
  • In this paper, the authors consider a gimbal system in which a camera is installed to reconnoiter the objects or targets. The issue for this considered system is to obtain information with good quality always. To achieve given objective, it is necessary to control the gimbal system with accurate rotation angle and speed. In this paper, the authors design a robust control system based on $H_{\infty}$ control framework. The controller is designed using a plant model obtained by experiment and simulation. And the experiment result with good control performance is presented.

Verification of Torque Disturbance Modeling of CMG Gimbal and Its Torque Ripple Reduction using Feed-Forward Control (제어모멘트자이로 김블의 토크 외란 모델링 검증 및 피드포워드 제어를 이용한 토크 리플 저감)

  • Lee, Junyong;Oh, Hwasuk
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • In this study, the generating of torque regarding the Control Moment Gyro (CMG) is proportional to the angular velocity of gimbal. This is the case because gimbal affects the attitude control of the satellite directly, and it is necessary to reduce the incidence of torque ripple of gimbal. In this paper, the cause of the torque ripple of gimbal is reviewed and mathematically modeled by assuming the friction imbalance of bearing, the magnetic field and the phase current imbalance of the motor. We are able to confidently estimate the modeling parameters of gimbal disturbance using a constant speed test, and then analyze the influence of applying feedforward control to our modeling. Additionally, the simulation results show that the torque ripple and angular velocity fluctuations are reduced when apply this modeling to the identified study parameters. Finally, we present the disturbance reduction technique using our disturbance modeling.

KSR- III 추력벡터제어를 위한 유압-서보 김발엔진 구동시스템에 관한 연구

  • Lee, Hee-Joong
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.141-146
    • /
    • 2002
  • During dynamic flight by propulsion of rocket engine, in the atmosphere, the attitude control of flight vehicle can be accomplished by the aerodynamic fin actuator. But, in the outer space, the method of TVC(Thrust Vector Control) is only depend on for it. There are many systems which were developed for TVC. In our research, among them we adopted gimbal engine actuation system which could control the vector of thrust by swivelling rocket engine connected by gimbal. There are electro-hydraulic, electro-mechanical and pneumatic system which can be used as gimbal engine actuation system, but the electro-hydraulic system that has high ratio of output power to mass is preferred for the high power system. In this note, we made a mathematical model of the electro-hydraulic gimbal engine actuation system for the TVC of KSR-III in detail and on the base of this model we performed a simulation study. And then, we verified the model by making a comparison between the simulation and the experiments on the real system.

  • PDF