• Title/Summary/Keyword: Giga Cycle Fatigue

Search Result 3, Processing Time 0.016 seconds

Accelerated Ultrasonic Fatigue Testing Applications and Research Trends (초음파 가속피로시험 적용 사례 및 연구 동향)

  • Cho, In-Sik;Shin, Choong-Shig;Kim, Jong-Yup;Jeon, Yong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.707-712
    • /
    • 2012
  • Very high cycle fatigue (VHCF) behavior of aerospace components has emerged much attention due to their long service life. In this study, a piezoelectric ultrasonic fatigue testing (UFT) system has been developed by Mbrosiatec Co., Ltd. to study the high cycle fatigue (HCF) strength of Ti-6Al-4V alloy. Hourglass-shaped specimens have been investigated in the range from $10^6$ to $10^9$ cycles at room temperature under completely reversed R = -1 loading conditions,. Scanning electron microscopy (SEM) analysis revealed that failures occurred in the entire range up to the gigacycle regime, and the fractures have beenfound to be initiated from the surface, unlike in steels. However, it was found from the SEM microgprahs that microcracks transformed into intergranular fractures. Thus, it can be concluded from according to the results that this test method can be applicable to commercialized automotive and railroad parts that require high cycle fatigue strength.

Effect of Surface Treatment on Fatigue Strength of SCM440H (SCM440H 금형강의 표면 처리에 따른 피로 특성 연구)

  • Yeom, Hyunho;Lee, Moon Gu;Lee, Choon Man;Jeon, Yongho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.779-784
    • /
    • 2013
  • Increased efficiency and improved performance associated with light-weight materials were investigated in this study. Numerous studies have investigated surface treatments to improve the fatigue strength of metals. Laser heat treatment is a promising method because the power and spot size can be easily controlled, allowing a small heat affected zone (HAZ). However, changes in the material properties can result; in particular, the material can become more brittle. In this study, a combination of laser heat treatment and vibration peening was proposed to increase fatigue strength without changing the material characteristics. SCM440H was investigated experimentally, and specimens were tested using a giga-cycle ultrasonic fatigue tester. The results show that the combination of these two processes significantly increased the fatigue strength and, furthermore, different fracture types were observed after a small and large number of cycles.

Evaluation of Mechanical Properties and Fatigue Behavior of STS 304L due to Plastic Working (소성가공에 따른 STS 304L 재료의 기계적 특성 및 피로평가)

  • Shim, Hyun-Bo;Kim, Young-Kyun;Suh, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.635-643
    • /
    • 2017
  • The purpose of this study is to investigate the influence of the cold reduction rate and an ultrasonic fatigue test (UFT) on the fatigue behaviors of STS 304L. The tensile strength, yield strength, hardness value and fatigue limit in the UFT fatigue test linearly increased as thickness decreased from 1.5 mm to 1.1 mm, as the cold reduction rate of STS 304L increased. As a result of the UFT fatigue test (R = -1) of four specimens, the fatigue limit of the S-N curve formed a knee point in the region of $10^6$, and the 2nd fatigue limit caused by giga cycle fatigue did not appeared. In the case of t = 1.1 mm, the highest fatigue limit was 345 MPa, which was 64.3% higher than the original material (t = 1.5 mm). As a result of the UFT fatigue test of STS 304L, many small surface cracks occurred, grown, coalesced while tearing.