• Title/Summary/Keyword: Gibberella zeae

Search Result 32, Processing Time 0.021 seconds

Identification of the Causal Organism of Cereal Scab in Korea (한국에 발생하는 맥류의 적미병균의 동정)

  • 이배함;라민근;최태주
    • Korean Journal of Microbiology
    • /
    • v.2 no.1
    • /
    • pp.25-27
    • /
    • 1964
  • Lee, Bae Ham, Rha, Min Keun and Choi, Tae joo (Dept. of Biology, Kon Kuk University). Identification of the causal organism of cereal scab in Korea. Kor. J. Microbiol. Vol. 2, No. 1, p. 25-27 (1964) Head blight or scab occurred in barley, wheat, rye and some other cereals widely in this country during the spring of 1963. The causal organisms were collected from 34local areas and isolated purely. All isolates identified as Gibberella zeae (Schw.) Petch. and Fusarium graminearum Schw. as conidial stage.

  • PDF

Taxonomy and Identification of Fungi Isolated from Round Bale Silage (원형 곤포사일리지에 발생한 곰팡이의 분류 동정)

  • Nho, W.G.;Yeo, J.M.;Kim, W.Y.;Lee, J.H.;Seo, S.;Kim, M.K.;Seo, G.S.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.14 no.1
    • /
    • pp.61-83
    • /
    • 2012
  • To identification of fungi that occurs round bale silages, 253 fungal contaminated samples were collected from 2009 to 2011. Total 253 silage samples from Italian ryegrass, sudan grass, rye, corn, barley and oat were analysed. Total 270 strains were purely isolated from contaminated round bale silages. The fungi were identified with morphological characteristics and rDNA sequence analysis. Nineteen species of fungi(Rhizopus sp., Fusarium spp., Coprinus sp., Blastomyces sp., Aureobasidium sp., Polypaecilum sp., Botryoderma sp., Mucor sp., Scytalidium sp., Sphaeropsis sp., Aspergillus spp., Trichocladium sp., Humicola sp., Staphylotrichum sp., Periconia sp., Verticillium sp., Diplococcium sp., Penicillium spp. and Trichoderma spp.) were identified by morphological characteristics. On the other hand, fungi isolated from silage were identified to Acremonium strictum, Aspergillus tubingensis, Bionectria ochroleuca, Dipodascaceae sp., Fusarium proliferatum, Fusarium oxysporum, Fusrium solani, Gelasinospora reticulata, Gibberella moniliformis, Gibberella zeae, Nectria mauritiicola, Penicillium paneum, Pseudallecheria boydii, Schizophyllum commune, Scopulariopsis brevicaulis and Simplicillium lamellicola by rDNA sequence analysis. Penicillium sp. and Trichoderma sp., were isolated 74 and 64 strains, respectively. Humicola sp., Aspergillus sp., Coprinus sp., and Fusarium spp. were identified 10 to 30 strains. Most fungi were isolated together with more than one species in a sample looked like one species with the naked eyes.

Shifting reproductive mode of a mycotoxin producing-fungus by manipulation of mating-type genes

  • Lee, Jungkwan;Lee, Teresa;Lee, Yin-Won;Yun, Sung-Hwan;Gillian Turgeon
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.85.1-85
    • /
    • 2003
  • In most ascomycetes, a single mating type locus, MAT, with two alternate forms (MAT1-1 and MAT1-2) called idiomorphs, controls mating ability. In heterothallic ascomycetes these alternate idiomorphs reside in different nuclei. In contrast, most homothallic ascomycetes carry both MAT1-1 and MAT1-2 in a single nucleus, usually closely linked. An example of the latter is Gibberella zeae, a producer of mycotoxins such as trichothecene and zearalenone that threaten human and animal health. We asked if G. zeae could be made strictly heterothallic by manipulation of MAT. Targeted gene replacement was used to differentially delete MAT1-1 or MAT1-2 from a wild type haploid MAT1-1 MAT1-2 strain, resulting in MAT1-1;mat1-2, mat1-1;MAT1-2 strains that were self-sterile, yet able to cross to wild type testers and more importantly, to each other. These results indicated that differential deletion of MAT idiomorphs eliminates selfing ability of G. zeae, but the ability to outcross is retained. To our knowledge, this is the first report of complete conversion of fungal reproductive strategy from homothallic to heterothallic by targeted manipulation of MAT. Practically, this approach opens the door to simple and efficient procedures for obtaining sexual recombinants of G. zeae that will be useful for genetic analyses of mycotoxin production and other traits, such as ability to cause disease.

  • PDF