• Title/Summary/Keyword: Giant Magellan Telescope

Search Result 57, Processing Time 0.036 seconds

Overview of Modeling Process using Giant Magellan Telescope Software Development Kit

  • Han, Jimin;Kim, Changgon;Pi, Marti;Filgueira, Josema;Cox, Marianne;Peng, Chien;Roman, Alfonso;Molgo, Jordi;Schoenell, William;Swett, Hector;Thanasekaran, Divya;Kurkdjian, Pierre;plubell, Charles;Ji, Tae-Geun;Lee, Hye-In;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.46.2-46.2
    • /
    • 2019
  • The software group in Giant Magellan Telescope Organization (GMTO) is developing the GMT Software Development Kit (SDK) for the device control and the telescope operations. The SDK is dived into the modeling and the operation defining. In the modeling process, Domain Specific Language (DSL) can validate the availability of a model and generate a skeleton code automatically. After the modeling, the developer can simply define the device operation. All devices are connected via EtherCAT, and the SDK simplifies the network connection. This presentation will give an overview of the modeling process and development examples using the GMT SDK.

  • PDF

Demonstration of Modeling Process using Giant Magellan Telescope Software Development Kit

  • Han, Jimin;Pi, Marti;Filgueira, Josema;Cox, Marianne;Molgo, Jordi;Swett, Hector;Kurkdjian, Pierre;Lee, Hye-In;Ji, Tae-Geun;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.72.1-72.1
    • /
    • 2019
  • The Giant Magellan Telescope Organization (GMTO) is developing the GMT Software Development Kit (SDK) for the Observatory Control System (OCS). The SDK models a subsystem of the GMT using a Domain Specific Language (DSL) which can generate a skeleton code and validates the availability of the model automatically. The OCS includes a Device Control System (DCS) and all the devices are connected with the DCS via EtherCAT. The DCS has a component (Hardware Adapter) to communicate with EtherCAT slaves. In this presentation, we demonstrate the modeling process and describe the importance and usage plan of the SDK.

  • PDF

Control software for temperature sensors in astronomical devices using GMT SDK 1.6.0

  • Kim, Changgon;Han, Jimin;Pi, Marti;Filgueira, Josema;Cox, Marianne;Roman, Alfonso;Molgo, Jordi;Schoenell, William;Kurkdjian, Pierre;Ji, Tae-Geun;Lee, Hye-In;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.78.2-78.2
    • /
    • 2019
  • The temperature control of a scientific device is essential because extreme temperature conditions can cause hazard issues for the operation. We developed a software which can interact with the temperature sensor using the GMT SDK(Giant Magellan Telescope Software Development Kit) version 1.6.0. The temperature sensor interacts with the EtherCAT(Ethernet for Control Automation Technology) slave via the hardware adapter, sending and receiving data by a packet. The PDO(Process Data Object) and SDO(Service Data Object), which are the packet interacts with each EtherCAT slave, are defined on the TwinCAT program that enables the real-time control of the devices. The user can receive data from the device via grs(GMT Runtime System) tools and log service. Besides, we programmed the software to print an alert message on the log when the temperature condition changes to certain conditions.

  • PDF

ESTIMATED PRODUCTIVITY OF THE GIANT MAGELLAN TELESCOPE (거대 마젤란 망원경의 논문 생산성 예측)

  • Ahn, S.H.;Park, B.G.;Kim, Y.S.;Chun, M.Y.;Kim, H.I.;Sung, H.I.;Lee, D.W.;Kim, S.C.
    • Publications of The Korean Astronomical Society
    • /
    • v.23 no.2
    • /
    • pp.123-128
    • /
    • 2008
  • Productivity of the Giant Magellan Telescope is estimated based on the annual number of papers produced by the currently operating large telescopes such as the telescope at the ESO La Silla observatory, CFHT, AAT, the Magellan telescopes, ESO VLT, Japanese Subaru, the Gemini telescopes, and the Keck telescopes. We find that the amount of papers produced by a large telescope is roughly proportional to the diameter of its primary mirror. With this fact, we estimate the SCI-paper productivity of the Giant Magellan Telescope by extrapolating the productivity of the above-mentioned large telescopes. Moreover, according to the paper written in 2001 by Benn and Sanchez, the amount of highly-cited papers produced by a large telescope is roughly proportional to the light-gathering power of the telescope or the square of the diameter. Hence, we survey the productivity of Nature-class papers of the large telescopes and extrapolate the relationship to estimate the productivity of the Nature-class papers by using the Giant Magellan telescope of a filled aperture 21.4 meters in diameter. We expect that Korean astronomers will be able to produce annually 60 SCI-class papers and 20 Nature-class papers with high scientific impact by using the telescope-time corresponding to the 10% share of the Giant Magellan Telescope.

Science with the Giant Magellan Telescope Integral-Field Spectrograph

  • Lee, Jae-Jun;Park, Byeong-Gon;Hwang, Na-Rae;Lee, Jun-Hyeop
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.68.2-68.2
    • /
    • 2013
  • The Giant Magellan Telescope Integral-Field Spectrograph (GMTIFS) is a near-infrared imager and integral-field spectrograph, which will be the workhorse adaptive-optics (AO) instrument on the GMT when AO operations begin. We will describe the current design and proposed capabilities of the GMTIFS. We will also present a brief overview of GMTIFS science cases that include first-light objects, galaxy feedback and assembly, the nature of compact massive objects as well as the formation and evolution of stars and planets.

  • PDF

Science Instrument Development for the Giant Magellan Telescope

  • Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.55.1-55.1
    • /
    • 2010
  • The Giant Magellan Telescope (GMT) is a 24.5m diameter optical/infrared telescope. Its seven 8.4m primary mirrors give it a collecting area equivalent to a 21.4m filled aperture. The ten GMT partners are constructing the telescope at the Las Campanas Observatory in Chile with first light planned for the end of 2018. In this paper, we describe the plans for the first-generation focal plane instrumentation for the telescope. The GMTO Corporation has solicited studies for instruments capable of carrying out the broad range of objectives outlined in the GMT Science Case. Six instruments have been selected for 14 month long conceptual design studies. We describe the features of these instruments and give examples of the major science questions that they can address.

  • PDF

Giant Magellan Telescope Project in 2014

  • Park, Byeong-Gon;Yuk, In-Soo;Lee, Jae-Joon;Yoon, Yang-Noh;Hwang, Narae;Park, Chan;Kim, Jihun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.100.1-100.1
    • /
    • 2014
  • Korea Astronomy and Space Science Institute (KASI) has been participating in the Giant Magellan Telescope (GMT) project since 2009. In 2014, GMT project has passed its important milestones toward construction of the telescope and observatory facilities. We will report the recent achievements and current status of the project in this contribution.

  • PDF

Performance Evaluation of the Tip-tilt Actuator in Fast Steering Secondary Mirror for Large Telescope (대형 망원경용 FSM(Fast Steering Secondary Mirror)을 위한 팁틸트 액츄에이터의 성능평가)

  • Kim, Ho Sang;Lee, Dong-Chan;Lee, Kyoung-Don;Kim, Young-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.403-409
    • /
    • 2014
  • For ground-based telescope application, the performance assessment of tip-tilt actuator is important because the optical quality of telescope depends upon the windshake compensation ability of the fast steering secondary mirror. But it is difficult to measure the performance characteristics of the actuators due to the large size mirror and test facilities including the vacuum support and structural frame. In this paper, the full-scale tip-tilt test bed for the large size secondary mirror with diameter of 1m is built and the several tests are performed including the range, resolution and frequency response function. From the measurement results, it is shown that the tip-tilt actuator can successfully compensate the windshake with frequency of maximum 12 Hz and be a candidate for the Giant Magellan Telescope.