• 제목/요약/키워드: Gfp

검색결과 545건 처리시간 0.026초

Activation and Recruitment of Regulatory T Cells via Chemokine Receptor Activation in Trichinella spiralis-Infected Mice

  • Ahn, Jeong-Bin;Kang, Shin Ae;Kim, Dong-Hee;Yu, Hak Sun
    • Parasites, Hosts and Diseases
    • /
    • 제54권2호
    • /
    • pp.163-171
    • /
    • 2016
  • As most infections by the helminth parasite elicit the recruitment of $CD4^+CD25^+Foxp3^+$ T ($T_{reg}$) cells, many scientists have suggested that these cells could be used for the treatment of immune-mediated inflammation and associated diseases. In order to investigate the distribution and alteration of activated $T_{reg}$ cells, we compared the expression levels of $T_{reg}$ cell activation markers in the ileum and gastrocnemius tissues 1, 2, and 4 weeks after infection. The number of $T_{reg}$ cells was monitored using GFP-coded Foxp3 transgenic mice. In mice at 1 week after Trichinella spiralis infection, the number of activated $T_{reg}$ cells was higher than in the control group. In mice at 2 weeks after infection, there was a significant increase in the number of cells expressing Foxp3 and CTLA-4 when compared to the control group and mice at 1 week after infection. At 4 weeks after infection, T. spiralis was easily identifiable in nurse cells in mouse muscles. In the intestine, the expression of Gzmb and Klrg1 decreased over time and that of Capg remained unchanged for the first and second week, then decreased in the 4th week. However, in the muscles, the expression of most chemokine genes was increased due to T. spiralis infection, in particular the expression levels of Gzmb, OX40, and CTLA-4 increased until week 4. In addition, increased gene expression of all chemokine receptors in muscle, CXCR3, CCR4, CCR5, CCR9, and CCR10, was observed up until the 4th week. In conclusion, various chemokine receptors showed increased expressions combined with recruitment of $T_{reg}$ cells in the muscle tissue.

shRNA Mediated RHOXF1 Silencing Influences Expression of BCL2 but not CASP8 in MCF-7 and MDA-MB-231 Cell Lines

  • Ghafouri-Fard, Soudeh;Abdollahi, Davood Zare;Omrani, Mirdavood;Azizi, Faezeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5865-5869
    • /
    • 2012
  • RHOXF1 has been shown to be expressed in embryonic stem cells, adult germline stem cells and some cancer lines. It has been proposed as a candidate gene to encode transcription factors regulating downstream genes in the human testis with antiapoptotic effects. Its expression in cancer cell lines has implied a similar role in the process of tumorigenesis. The human breast cancer cell lines MDA-MB-231 and MCF-7 were cultured in DMEM medium and transfected with a pGFP-V-RS plasmid bearing an RHOXF1 specific shRNA. Quantitative real-time RT-PCR was performed for RHOXF1, CASP8, BCL2 and HPRT genes. Decreased RHOXF1 expression was confirmed in cells after transfection. shRNA knock down of RHOXF1 resulted in significantly decreased BCL2 expression in both cell lines but no change in CASP8 expression. shRNA targeting RHOXF1 was shown to specifically mediate RHOXF1 gene silencing, so RHOXF1 can mediate transcriptional activation of the BCL2 in cancers and may render tumor cells resistant to apoptotic cell death induced by anticancer therapy. shRNA mediated knock down of RHOXF1 can be effective in induction of apoptotic pathway in cancer cells via BCL2 downregulation, so it can have potential therapeutic utility for human breast cancer.

Silencing of Twist Expression by RNA Interference Suppresses Epithelial-mesenchymal Transition, Invasion, and Metastasis of Ovarian Cancer

  • Wang, Wen-Shuang;Yang, Xing-Sheng;Xia, Min;Jiang, Hai-Yang;Hou, Jian-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권9호
    • /
    • pp.4435-4439
    • /
    • 2012
  • Purpose: This study aimed to explore the role of the Twist gene in the epithelial-mesenchymal transition of ovarian cancer. Methods: An RNA interference plasmid expressing a small interfering RNA (siRNA)-targeting Twist (Twist siRNA vector) was designed, constructed, and transfected into the human ovarian cancer cell line A2780. Transfection efficiency was assessed under a fluorescence microscope. Changes in the expression of Twist mRNA in A2780 after transfection with the pGenesil Twist shRNA plasmid were analyzed through RT-PCR. MTT assays and adhesion experiments were applied to determine changes in proliferation and adhesion ability of A2870 after transfection with the Twist shRNA plasmid. Changes in the expression of the E-cadherin and N-cadherin proteins in A2780 after transfection with the Twist shRNA plasmid were analyzed using Western blotting. Result: The restructuring plasmid pGenesil-Twist shRNA was constructed successfully. After 48 h of culture, 80% of the cells expressed high-intensity GFP fluorescence and stability. The expression of Twist decreased significantly after the transfection of the Twist shRNA plasmid (P<0.05). Proliferation of the transfected Twist shRNA cells showed no difference with that of the A2780-nontransfection or A2780-si-control groups (P>0.05) but the adhesion ability of A2780 decreased dramatically (P<0.05). Expression of the E-cadherin protein increased, whereas that of the N-cadherin protein decreased compared with that in the A2780-nontransfection or A2780-si-control groups (P<0.05). Conclusion: Twist is essential for epithelial-mesenchymal transition, invasion, and metastasis of ovarian cancer.

Significant Attenuation of Aden-associate Virus Gene Expression by Catechol-conjugated Heparin Surface Coating (카테콜기가 도입된 헤파린의 표면고정화에 의한 아데노연관바이러스의 발현 억제에 관한 연구)

  • Do, Minjae;Lee, Slgirim;Jang, Jae-Hyung;Lee, Haeshin
    • Journal of Adhesion and Interface
    • /
    • 제17권4호
    • /
    • pp.149-154
    • /
    • 2016
  • In this study, natural polymer-based virus neutralizing agent was developed in an attempt to replace the conventional sterilization method for mammalian cell culture. A catechol conjugated heparin was synthesized by using EDC chemistry, and it show unique binding ability to virus which has heparin affinity (adenovirus, adeno-associated virus). To evaluate neutralization ability of catechol conjugated heparin, adeno-associated virus was used for test model, instead of using a pathogenic virus. The catechol conjugated heparin exhibited resistance to high concentration of salt and complete inactivation of adeno-associated virus. The result suggests that the catechol conjugated heparin, which is biocompatible and efficiency, may replace conventional sterilization method for mammalian cell culture.

Isolation and Characterization of Pathogen-Inducible Putative Zinc Finger DNA Binding Protein from Hot Pepper Capsicum annuum L.

  • Oh, Sang-Keun;Park, Jeong-Mee;Jung, Young-Hee;Lee, Sanghyeob;Kim, Soo-Yong;Eunsook Chung;Yi, So-Young;Kim, Young-Cheol;Seung, Eun-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.79.2-80
    • /
    • 2003
  • To better understand plant defense responses against pathogen attack, we identified the transcription factor-encoding genes in the hot pepper Capsicum annuum that show altered expression patterns during the hypersensitive response raised by challenge with bacterial pathogens. One of these genes, Ca1244, was characterized further. This gene encodes a plant-specific Type IIIA - zinc finger protein that contains two Cys$_2$His$_2$zinc fingers. Ca1244 expression is rapidly and specifically induced when pepper plants are challenged with bacterial pathogens to which they are resistant. In contrast, challenge with a pathogen to which the plants are susceptible only generates weak Ca1244 expression. Ca1244 expression is also strongly induced in pepper leaves by the exogenous application of ethephon, an ethylene releasing compound. Whereas, salicylic acid and methyl jasmonate had moderate effects. Pepper protoplasts expressing a Ca1244-smGFP fusion protein showed Ca1244 localizes in the nucleus. Transgenic tobacco plants overexpressing Ca1244 driven by the CaMV 355 promoter show increased resistance to challenge with a tobacco-specific bacterial pathogen. These plants also showed constitutive upregulation of the expression of multiple defense-related genes. These observations provide the first evidence that an Type IIIA - zinc finger protein, Ca1244, plays a crucial role in the activation of the pathogen defense response in plants.

  • PDF

The cloning and characterization of the small GTP-binding Protein RacB in rice.

  • Jung, Young-Ho;Jaw, Nam-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.81.2-82
    • /
    • 2003
  • Plants have evolved along with pathogens, and they have developed sophisticated defense systems against specific microorganisms to survive. G-protons are considered one of the upstream signaling components working as a key for the defense signal transduction pathway. For activation and inactivation of G-protein, GTP-biding proteins are involved. GTP -binding proteins are found in all organisms. Small GTP-binding proteins, having masses of 21 to 30kD, belong to a superfamily, often named the Ras supefamily because the founding members are encoded by human Ras genes initially discovered as cellular homologs of the viral ras oncogene. Members of this supefamily share several common structural features, including several guanine nucleotide binding domains and an effector binding domain. However, exhibiting a remarkable diversity in both structure and function. They are important molecular switches that cycle between the GDP-bound inactive form into the GTP-bound active form through GDP/GTP replacement. In addition, most GTP-binding proteins cycle between membrane-bound and cytosolic forms. such as the RAC family are cytosolic signal transduction proteins that often are involved in processing of extracellular stimuli. Plant RAC proteins are implicated in regulation of plant cell architecture secondary wall formation, meristem signaling, and defense against pathogens. But their molecular mechanisms and functions are not well known. We isolated a RacB homolog from rice to study its role of defense against pathogens. We introduced the constitutively active and the dominant negative forms of the GTP-hinging protein OsRacB into the wild type rice. The dominant negative foms are using two forms (full-sequence and specific RNA interference with RacB). Employing southern, and protein analysis, we examine to different things between the wild type and the transformed plant. And analyzing biolistic bombardment of onion epidermal cell with GFP-RacB fusion protein revealed association with the nucle.

  • PDF

DnaJC18, a Novel Type III DnaJ Family Protein, is Expressed Specifically in Rat Male Germ Cells

  • Gomes, Cynthia;Soh, Jaemog
    • Development and Reproduction
    • /
    • 제21권3호
    • /
    • pp.237-247
    • /
    • 2017
  • Mammalian spermatogenesis occurs in a precise and coordinated manner in the seminiferous tubules. One of the attempts to understand the detailed biological process during mammalian spermatogenesis at the molecular level has been to identify the testis specific genes followed by study of the testicular expression pattern of the genes. From the subtracted cDNA library of rat testis prepared using representational difference analysis (RDA) method, a complimentary DNA clone encoding type III member of a DnaJ family protein, DnaJC18, was cloned (GenBank Accession No. DQ158861). The full-length DnaJC18 cDNA has the longest open reading frame of 357 amino acids. Tissue and developmental Northern blot analysis revealed that the DnaJC18 gene was expressed specifically in testis and began to express from postnatal week 4 testis, respectively. In situ hybridization studies showed that DnaJC18 mRNA was expressed only during the maturation stages of late pachytene, round and elongated spermatids of adult rat testis. Western blot analysis with DnaJC18 antibody revealed that 41.2 kDa DnaJC18 protein was detected only in adult testis. Immunohistochemistry study further confirmed that DnaJC18 protein, was expressed in developing germ cells and the result was in concert with the in situ hybridization result. Confocal microscopy with GFP tagged DnaJC18 protein revealed that it was localized in the cytoplasm of cells. Taken together, these results suggested that testis specific DnaJC18, a member of the type III DnaJ protein family, might play a role during germ cell maturation in adult rat testis.

Development of a Transient ihpRNA-induced Gene Silencing System for Functional Analysis in Persimmon (Diospyros kaki Thunb.)

  • Mo, Rongli;Zhang, Na;Yang, Sichao;Zhang, Qinglin;Luo, Zhengrong
    • Horticultural Science & Technology
    • /
    • 제34권2호
    • /
    • pp.314-323
    • /
    • 2016
  • A transient ihpRNA-induced gene silencing system based on Agrobacterium-mediated injection infiltration has been established to evaluate candidate genes involved in proanthocyanidin (PAs) biosynthesis in persimmon (Diospyros kaki Thunb.). We chose DkPDS (phytoene desaturase) as a gene-silencing target to evaluate the newly developed transient gene silencing system. Our qRT-PCR analysis indicated that two ihpRNA constructs (pHG-PDS5' and pHG-PDS3') targeted DkPDS, which also led to significantly reduce expression of DkPDS in 'Mopanshi' persimmon leaves. To further confirm the reliability of the system, we successfully utilized it for DkLAR (leucoanthocyanidin reductase) gene silencing. The expression levels of DkLAR in 'Mopanshi' and 'Eshi 1' leaves were ca. 6-fold and ca. 5-fold lower than those in leaves harboring empty vector (pHG-GFP), respectively. DMACA (4-dimethylaminocinnamaldehyde) staining and the Folin-Ciocalteau assay showed that the accumulation of PAs was markedly inhibited in 'Mopanshi', 'Eshi 1' and 'Youhou' leaves. These results indicate that DkLAR plays an important role in the accumulation of PAs in persimmon. The transient ihpRNA-induced gene silencing method developed in this study is a highly efficient and useful tool for functional analysis of persimmon genes involved in PA biosynthesis.

Structure and Function of NtCDPK1, a Calcium-dependent Protein Kinase in Tobccco

  • Yoon, Gyeong-Mee;Lee, Sang-Sook;Pai, Hyun-Sook
    • Journal of Plant Biotechnology
    • /
    • 제2권2호
    • /
    • pp.79-82
    • /
    • 2000
  • We have isolated a cDNA encoding a calcium-dependent protein kinase (CDPK) in Nicotiana tabacum, which was designated NtCDPK1. Accumulation of the NtCDPK1 mRNA was stimulated by various stimuli, including phytohormones, CaCl$_2$ wounding, fungal elicitors, chitin and methyl jasmonate. The NtCDPK1 gene encodes a functional Ser/Thr protein kinase of which phosphorylation activity is strongly induced by calcium. By analyzing expression of the NtCDPK1-GFP fusion protein and by immunoblotting with antibody which reacts with NtCDPK1, we found that NtCDPK1 is localized in membrane and nucleus in plant cells. Silencing expression of the NtCDPK1 transgene resulted in marked decrease of lateral root development in the transgenic tobacco plants. Yeast two hybrid screening using NtCDPK1 as a bait identified a tobacco homologue of proteasome regulatory subunit 21D7, designated Nt21D7. The 21D7 mRNA has been shown to be predominantly expressed in proliferating tissues in the cell cycledependent manner in carrot. The recombinant NtCDPK1 protein associated with Nt21D7 in vitro, and could phosphorylate the Nt21D7 protein in vitro in the presence of calcium, suggesting that Nt21D7 protein is a natural substrate of NtCDPK1 in tobacco. These results suggest that NtCDPK1 may regulate tell proliferation processes, such as lateral root formation, by regulating specificity and/or activity of proteasome-mediated protein degradation pathway.

  • PDF

Studies on nickel uptake in transgenic Arabidopsis thaliana introduced with TgMTP1 gene encoding metal tolerance protein (TgMTP1 과발현 애기장대에서 Nickel 흡수 연구)

  • Kim, Donggiun
    • Journal of Plant Biotechnology
    • /
    • 제42권4호
    • /
    • pp.409-413
    • /
    • 2015
  • To enhance phytoremediation, which removes heavy metal from soil, transgenic plants were applied to contaminated soil. We constructed a transformation vector expressing both $TgMTP_1$ (T. goesingense metal tolerance protein):HA and TgMTP:GFP genes. Transgenic plants were generated using an Agrobacterium-mediated transformation system that expressed the two vectors. Screening and analysis confirmed the incorporation of foreign genes into the Arabidopsis thaliana genome. Callus was induced in the 116 T3 line. These transgenic plants and calli were used for further analyses on the accumulation of Ni. The 116 T3-line plants and calli from selected lines were resistant to heavy metals and accumulated Ni in their leaves. The expression level of TgMTP RNA was equal in all leaves, but protein stability increased in the leaves with Ni treatment. According to these results, we suggest that $TgMTP_1$-overexpressing plants may be useful for phytoremediation of soil.