• Title/Summary/Keyword: Gesture Recognition.

Search Result 558, Processing Time 0.032 seconds

A Study on Gesture Recognition Using Principal Factor Analysis (주 인자 분석을 이용한 제스처 인식에 관한 연구)

  • Lee, Yong-Jae;Lee, Chil-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.8
    • /
    • pp.981-996
    • /
    • 2007
  • In this paper, we describe a method that can recognize gestures by obtaining motion features information with principal factor analysis from sequential gesture images. In the algorithm, firstly, a two dimensional silhouette region including human gesture is segmented and then geometric features are extracted from it. Here, global features information which is selected as some meaningful key feature effectively expressing gestures with principal factor analysis is used. Obtained motion history information representing time variation of gestures from extracted feature construct one gesture subspace. Finally, projected model feature value into the gesture space is transformed as specific state symbols by grouping algorithm to be use as input symbols of HMM and input gesture is recognized as one of the model gesture with high probability. Proposed method has achieved higher recognition rate than others using only shape information of human body as in an appearance-based method or extracting features intuitively from complicated gestures, because this algorithm constructs gesture models with feature factors that have high contribution rate using principal factor analysis.

  • PDF

Development of Gesture-allowed Electronic Ink Editor (제스쳐 허용 전자 잉크 에디터의 개발)

  • 조미경;오암석
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.6
    • /
    • pp.1054-1061
    • /
    • 2003
  • Electronic ink is multimedia data that have emerged from the development of pen-based computers such as PDAs whose major input device is a stylus pen. Recently with the development and supply of pen-based mobile computers, the necessity of data processing techniques of electronic ink has increased. Techniques to develop a gesture-allowed text editor in electronic ink domain were studied in this paper. Gesture and electronic ink data are a promising feature of pen-based user interface, but they have not yet been fully exploited. A new gesture recognition algorithm to identify pen gestures and a segmentation method for electronic ink to execute gesture commands were proposed. An electronic ink editor, called GesEdit was developed using proposed algorithms. The gesture recognition algorithm is based on eight features of input strokes. Convex hull and input time have been used to segment electronic ink data into GC(Gesture Components) unit. A variety of experiments by ten people showed that the average recognition rate reached 99.6% for nine gestures.

  • PDF

An Implementation of Taekwondo Action Recognition System using Multiple Sensing (멀티플 센싱을 이용한 태권도 동작 인식 시스템 구현)

  • Lee, Byong Kwon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.436-442
    • /
    • 2016
  • There are a lot of sports when you left the victory and the defeat of the match the referee subjective judgment. In particular, TaeKwonDo pumse How accurate a given action? Is important. Objectively evaluate the subjective opinion of victory and defeat in a sporting event and the technology to keep as evidence is required. This study was implemented a system for recognizing Taekwondo executed through the number of motion recognition device. Step Sensor also used to detect a user's location. This study evaluated the rate matching the standard gesture data and the motion data. Through multiple gesture recognition equipment was more accurate assessment of the Taekwondo action.

Gesture Recognition using Global and Partial Feature Information (전역 및 부분 특징 정보를 이용한 제스처 인식)

  • Lee, Yong-Jae;Lee, Chil-Woo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.8
    • /
    • pp.759-768
    • /
    • 2005
  • This paper describes an algorithm that can recognize gestures constructing subspace gesture symbols with hybrid feature information. The previous popular methods based on geometric feature and appearance have resulted in ambiguous output in case of recognizing between similar gesture because they use just the Position information of the hands, feet or bodily shape features. However, our proposed method can classify not only recognition of motion but also similar gestures by the partial feature information presenting which parts of body move and the global feature information including 2-dimensional bodily motion. And this method which is a simple and robust recognition algorithm can be applied in various application such surveillance system and intelligent interface systems.

Gesture Recognition using MHI Shape Information (MHI의 형태 정보를 이용한 동작 인식)

  • Kim, Sang-Kyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.1-13
    • /
    • 2011
  • In this paper, we propose a gesture recognition system to recognize motions using the shape information of MHI (Motion History Image). The system acquires MHI to provide information on motions from images with input and extracts the gradient images from such MHI for each X and Y coordinate. It extracts the shape information by applying the shape context to each gradient image and uses the extracted pattern information values as the feature values. It recognizes motions by learning and classifying the obtained feature values with a SVM (Support Vector Machine) classifier. The suggested system is able to recognize the motions for multiple people as well as to recognize the direction of movements by using the shape information of MHI. In addition, it shows a high ratio of recognition with a simple method to extract features.

Human hand gesture identification framework using SIFT and knowledge-level technique

  • Muhammad Haroon;Saud Altaf;Zia-ur- Rehman;Muhammad Waseem Soomro;Sofia Iqbal
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.1022-1034
    • /
    • 2023
  • In this study, the impact of varying lighting conditions on recognition and decision-making was considered. The luminosity approach was presented to increase gesture recognition performance under varied lighting. An efficient framework was proposed for sensor-based sign language gesture identification, including picture acquisition, preparing data, obtaining features, and recognition. The depth images were collected using multiple Microsoft Kinect devices, and data were acquired by varying resolutions to demonstrate the idea. A case study was designed to attain acceptable accuracy in gesture recognition under variant lighting. Using American Sign Language (ASL), the dataset was created and analyzed under various lighting conditions. In ASL-based images, significant feature points were selected using the scale-invariant feature transformation (SIFT). Finally, an artificial neural network (ANN) classified hand gestures using specified characteristics for validation. The suggested method was successful across a variety of illumination conditions and different image sizes. The total effectiveness of NN architecture was shown by the 97.6% recognition accuracy rate of 26 alphabets dataset with just a 2.4% error rate.

Motion-Understanding Cell Phones for Intelligent User Interaction and Entertainment (지능형 UI와 Entertainment를 위한 동작 이해 휴대기기)

  • Cho, Sung-Jung;Choi, Eun-Seok;Bang, Won-Chul;Yang, Jing;Cho, Joon-Kee;Ki, Eun-Kwang;Sohn, Jun-Il;Kim, Dong-Yoon;Kim, Sang-Ryong
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.684-691
    • /
    • 2006
  • As many functionalities such as cameras and MP3 players are converged to mobile phones, more intuitive and interesting interaction methods are essential. In this paper, we present applications and their enabling technologies for gesture interactive cell phones. They employ gesture recognition and real-time shake detection algorithm for supporting motion-based user interface and entertainment applications respectively. The gesture recognition algorithm classifies users' movement into one of predefined gestures by modeling basic components of acceleration signals and their relationships. The recognition performance is further enhanced by discriminating frequently confusing classes with support vector machines. The shake detection algorithm detects in real time the exact motion moment when the phone is shaken significantly by utilizing variance and mean of acceleration signals. The gesture interaction algorithms show reliable performance for commercialization; with 100 novice users, the average recognition rate was 96.9% on 11 gestures (digits 1-9, O, X) and users' movements were detected in real time. We have applied the motion understanding technologies to Samsung cell phones in Korean, American, Chinese and European markets since May 2005.

  • PDF

The Development of a Real-Time Hand Gestures Recognition System Using Infrared Images (적외선 영상을 이용한 실시간 손동작 인식 장치 개발)

  • Ji, Seong Cheol;Kang, Sun Woo;Kim, Joon Seek;Joo, Hyonam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1100-1108
    • /
    • 2015
  • A camera-based real-time hand posture and gesture recognition system is proposed for controlling various devices inside automobiles. It uses an imaging system composed of a camera with a proper filter and an infrared lighting device to acquire images of hand-motion sequences. Several steps of pre-processing algorithms are applied, followed by a background normalization process before segmenting the hand from the background. The hand posture is determined by first separating the fingers from the main body of the hand and then by finding the relative position of the fingers from the center of the hand. The beginning and ending of the hand motion from the sequence of the acquired images are detected using pre-defined motion rules to start the hand gesture recognition. A set of carefully designed features is computed and extracted from the raw sequence and is fed into a decision tree-like decision rule for determining the hand gesture. Many experiments are performed to verify the system. In this paper, we show the performance results from tests on the 550 sequences of hand motion images collected from five different individuals to cover the variations among many users of the system in a real-time environment. Among them, 539 sequences are correctly recognized, showing a recognition rate of 98%.

Dynamic Gesture Recognition for the Remote Camera Robot Control (원격 카메라 로봇 제어를 위한 동적 제스처 인식)

  • Lee Ju-Won;Lee Byung-Ro
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1480-1487
    • /
    • 2004
  • This study is proposed the novel gesture recognition method for the remote camera robot control. To recognize the dynamics gesture, the preprocessing step is the image segmentation. The conventional methods for the effectively object segmentation has need a lot of the cole. information about the object(hand) image. And these methods in the recognition step have need a lot of the features with the each object. To improve the problems of the conventional methods, this study proposed the novel method to recognize the dynamic hand gesture such as the MMS(Max-Min Search) method to segment the object image, MSM(Mean Space Mapping) method and COG(Conte. Of Gravity) method to extract the features of image, and the structure of recognition MLPNN(Multi Layer Perceptron Neural Network) to recognize the dynamic gestures. In the results of experiment, the recognition rate of the proposed method appeared more than 90[%], and this result is shown that is available by HCI(Human Computer Interface) device for .emote robot control.

Feature-Strengthened Gesture Recognition Model Based on Dynamic Time Warping for Multi-Users (다중 사용자를 위한 Dynamic Time Warping 기반의 특징 강조형 제스처 인식 모델)

  • Lee, Suk Kyoon;Um, Hyun Min;Kwon, Hyuck Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.10
    • /
    • pp.503-510
    • /
    • 2016
  • FsGr model, which has been proposed recently, is an approach of accelerometer-based gesture recognition by applying DTW algorithm in two steps, which improved recognition success rate. In FsGr model, sets of similar gestures will be produced through training phase, in order to define the notion of a set of similar gestures. At the 1st attempt of gesture recognition, if the result turns out to belong to a set of similar gestures, it makes the 2nd recognition attempt to feature-strengthened parts extracted from the set of similar gestures. However, since a same gesture show drastically different characteristics according to physical traits such as body size, age, and sex, FsGr model may not be good enough to apply to multi-user environments. In this paper, we propose FsGrM model that extends FsGr model for multi-user environment and present a program which controls channel and volume of smart TV using FsGrM model.