DOI QR코드

DOI QR Code

다중 사용자를 위한 Dynamic Time Warping 기반의 특징 강조형 제스처 인식 모델

Feature-Strengthened Gesture Recognition Model Based on Dynamic Time Warping for Multi-Users

  • 이석균 (단국대학교 소프트웨어학과) ;
  • 엄현민 (단국대학교 소프트웨어학과) ;
  • 권혁태 (단국대학교 컴퓨터과학과)
  • 투고 : 2016.07.19
  • 심사 : 2016.08.09
  • 발행 : 2016.10.31

초록

최근 제안된 FsGr 모델은 가속도 센서 기반의 제스처 인식을 위한 방법으로 DTW 알고리즘을 두 단계로 적용하여 인식률을 개선하였다. FsGr 모델에서는 유사제스처 집합 개념을 정의하는데 훈련과정에서 유사제스처 집합들을 생성한다. 제스처 인식의 1차 인식 시도에서 유사제스처 집합이 정의된 제스처로 판정되면, 이 유사제스처 집합의 제스처들에 대해 특징이 강조된 부분들을 추출해 DTW를 통한 2차 인식을 시도한다. 그러나 동일 제스처도 사용자의 신체 크기, 나이, 성별, 등의 신체적인 특징에 따라 매우 다른 특성을 보이고 있어 FsGr 모델을 다중 사용자 환경에 적용하기에는 한계가 있다. 본 논문에서는 이를 다중 사용자 환경으로 확장한 FsGrM 모델을 제안하고 이를 사용한 스마트TV의 채널 및 볼륨 제어 프로그램을 보인다.

FsGr model, which has been proposed recently, is an approach of accelerometer-based gesture recognition by applying DTW algorithm in two steps, which improved recognition success rate. In FsGr model, sets of similar gestures will be produced through training phase, in order to define the notion of a set of similar gestures. At the 1st attempt of gesture recognition, if the result turns out to belong to a set of similar gestures, it makes the 2nd recognition attempt to feature-strengthened parts extracted from the set of similar gestures. However, since a same gesture show drastically different characteristics according to physical traits such as body size, age, and sex, FsGr model may not be good enough to apply to multi-user environments. In this paper, we propose FsGrM model that extends FsGr model for multi-user environment and present a program which controls channel and volume of smart TV using FsGrM model.

키워드

참고문헌

  1. R. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.
  2. H. Kwon and S. Lee, "Feature-Strengthened Gesture Recognition Model based on Dynamic Time Warping," KIPS Transactions on Software and Data Engineering, Vol.4, No.3, pp.143-150, 2015. https://doi.org/10.3745/KTSDE.2015.4.3.143
  3. J. Liu, L. Zhong, J. Wickramasuriya, and V. Vasudevan, "uWave: Accelerometer-based personalized gesture recognition and its applications," Pervasive and Mobile Computing, Vol.5, Issue 6, pp.657-675, 2009. https://doi.org/10.1016/j.pmcj.2009.07.007
  4. S. Nam, J. Kim, S. Heo, and I. Kim, "Smartphone Accelerometer-Based Gesture Recognition and its Robotic Application," KIPS Transactions on Software and Data Engineering, Vol.2, No.6, pp.395-402, 2013. https://doi.org/10.3745/KTSDE.2013.2.6.395
  5. M. Ko, B. West, S. Venkatesh, and M. Kumar, "Using dynamic time warping for online temporal fusion in multisensor systems," Information Fusion, Vol 9, Issue 3, pp.370-388, 2008. https://doi.org/10.1016/j.inffus.2006.08.002
  6. N. Gillian, R. Knapp, and S. O'Modhrain, "Recognition Of Multivariate Temporal Musical Gestures Using NDimensional Dynamic Time Warping," Proc. of the International Conference on New Interfaces for Musical Expression, pp.337-342, 2011.
  7. M. Muller, "Information Retrieval for Music and Motion," Springer, 2007.
  8. S. Kim, G. Park, S. Jeon, S. Yim, G. Han, and S. Choi, "HMM-based Motion Recognition with 3-D Acceleration Signal," KIISE Transactions on Computing Practices and Letters, Vol.15, No.3, pp.216-220, 2009.
  9. S. Cho, W. Bang, J. Yang, "Two-stage Recognition of Raw Acceleration Signals for 3-D Gesture-Understanding Cell Phones," Proc. of the 10th International Workshop on Frontiers in Handwriting Recognition, 2006.
  10. Ahmad Akl, Chen Feng, and Shahrokh Valaee, "A Novel Accelerometer-Based Gesture Recognition System," IEEE Transactions on Signal Processing, Vol.59, No.12, Dec., 2011.
  11. Renqiang Xie and Juncheng Cao, "Accelerometer-Based Hand Gesture Recognition by Neural Network and Similarity Matching," IEEE Sensors Journal, Vol.16, No.11, 2016.