• Title/Summary/Keyword: Germanium(Ge)

Search Result 183, Processing Time 0.03 seconds

Growth Characteristics and Germanium Absorption of Brasica juncea C. with Different Types of Germanium Compounds in Hydroponic Cultivation (게르마늄 종류별 양액재배시 갓의 생육특성 및 게르마늄 흡수)

  • Kang, Se-Won;Seo, Dong-Cheol;Jeon, Weon-Tai;Kang, Seok-Jin;Lee, Seong-Tae;Sung, Hwan-Hoo;Choi, Ik-Won;Kang, Ui-Gum;Kim, Hyun-Ook;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.465-472
    • /
    • 2011
  • To investigate the effect of inorganic ($GeO_2$) and organic (Ge-132) germanium treatment on Brasica juncea C. plant, growth characteristics and Ge contents were examined with various inorganic or organic germanium treatments (0, 5, 10, 25, 50, 75 and $100mg\;L^{-1}$), respectively. Brasica juncea C. growth did not much inhibited until Ge $10mg\;L^{-1}$ concentration under both Ge-132 and $GeO_2$ treatments as compared to control. On the other hand, at Ge concentration higher than $25mg\;L^{-1}$ concentration, Brasica juncea C. growth was inhibited under both Ge-132 and $GeO_2$ treatments. Under treatment of $GeO_2$, length of root and shoot slightly increased until $5mg\;L^{-1}$ concentration and dry weight slightly increased until $10mg\;L^{-1}$ concentration. Under treatment of Ge-132, length of root and shoot slightly increased until $10mg\;L^{-1}$ concentration and dry weight slightly increased until $25mg\;L^{-1}$ concentration. Total Ge contents in Brasica juncea C. early seedlings with $GeO_2$ treatment were a bit higher than those with Ge-132 treatment. Germanium was primarily accumulated in the roots (77%) with organic Ge (Ge-132) treatments, whereas Ge was primarily accumulated in the leaf (70%, respectively) with $GeO_2$ treatments. The Ge uptake rates in inorganic Ge treatments were slightly high than those in organic Ge treatments. Under inorganic Ge treatment with $2.5mg\;L^{-1}$, about 3% of Ge was accumulated into plant and distribution in leaf and root was 84.8% and 15.2%, respectively. Under organic Ge treatment with $2.5mg\;L^{-1}$, about 2.6% of Ge was accumulated into plant and distribution in leaf and root was 66.4% and 33.6%, respectively.

The Formation of Microcrystalline SiGe Film Using a Remote Plasma Enhanced Chemical Vapor Deposition (원격 플라즈마 화학기상 증착법으로 성장된 미세 결정화된 SiGe 박막 형성)

  • Kim, Doyoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.320-323
    • /
    • 2018
  • SiGe thin films were deposited by remote plasma enhanced chemical vapor deposition (RPE-CVD) at $400^{\circ}C$ using $SiH_4$ or $SiCl_4$ and $GeCl_4$ as the source of Si and Ge, respectively. The growth rate and the degree of crystallinity of the fabricated films were characterized by scanning electron microscopy and Raman analysis, respectively. The optical and electrical properties of SiGe films fabricated using $SiCl_4$ and $SiH_4$ source were comparatively studied. SiGe films deposited using $SiCl_4$ source showed a lower growth rate and higher crystallinity than those deposited using $SiH_4$ source. Ultraviolet and visible spectroscopy measurement showed that the optical band gap of SiGe is in the range of 0.88~1.22 eV.

Tin Germanium Sulfide Nanoparticles for Enhanced Performance Lithium Secondary Batteries (고성능 리튬 이차 전지를 위한 황화 주석 저마늄 (SnxGe1-xS) 나노입자 연구)

  • Cha, E.H.;Kim, Y.W.;Lim, S.A.;Lim, J.W.
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • Composition-controlled ternary components chalcogenides germanium tin sulfide ($Sn_xGe_{1-x}S$) nanoparticles were synthesized by a novel gas-phase laser photolysis reaction of tetramethyl germanium, tetramethyl tin, and hydrogen sulfide mixture. Subsequent thermal annealing of as-grown amorphous nanoparticles produced the crystalline orthorhombic phase nanoparticles. All these composition-tuned nanoparticles showed excellent cycling performance of the lithium ion battery. The germanium sulfide nanoparticles exhibit a maximum capacity of 1200 mAh/g after 70 cycles. As the tin composition (x) increases, the capacity maintains better at the higher discharge/charge rate. This novel synthesis method of tin germanium sulfide nanoparticles is expected to contribute to expand their applications in high-performance energy conversion systems.

Effect of Organic or Inorganic Selenium and Germanium on Growth Stage of Rice (벼 생육단계별 유기 또는 무기 셀레늄(Selenium)과 게르마늄(Germanium)의 처리효과)

  • Kim, Yeon-Su;Chun, Jin-Hyuk;Jeon, Young-Ji;Woo, Hyun-Nyung;Kim, Sun-Ju
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.2
    • /
    • pp.96-103
    • /
    • 2019
  • BACKGROUND: This study was conducted to develop selenium (Se)- and germanium (Ge)-enriched rice by foliar spray application of organic or inorganic Se and Ge. METHODS AND RESULTS: The time and frequency of organic or inorganic Se and Ge treatment were performed at the five main growth stages as followings: effective tillering stage (E), maximum tillering stage (M), booting stage (B), heading stage (H), grain filling stage (G). The main treatment plots were consisted of (1) 'once' treatment (at each E, M, B, H, G stage, Se/Ge single apply), (2) 'twice I' (at H + G stages, organic or inorganic Se/Ge apply), (3) 'twice II' (at H + G stages, mixture apply of Se + Ge + pesticide). The organic or inorganic Se treatment concentration was 20 and 40 ppm, and the Ge was 50 and 100 ppm. The Se and Ge contents in rice grain (brown rice and polished rice) were analyzed by inductively coupled plasma (ICP). The highest Se content was noted in brown rice 'twice I' with Se 40 ppm (1394.06) at H + G stages, but the lowest was in 'once' with Se 40 ppm ($367.79{\mu}g{\cdot}kg^{-1}$) at B stage. The highest of Se content in polished rice was found in 'twice I' of Se 40 ppm (1090.25) at H + G stages, but the lowest was in 'once' with Se 40 ppm ($403.53{\mu}g{\cdot}kg^{-1}$) at E stage. On the other hand, The highest of Ge content in brown rice was found in 'twice I' with Ge 100 ppm (398.66) at H + G stages, but the lowest was in 'once' with Ge 100 ppm ($139.64{\mu}g{\cdot}kg^{-1}$) at B stage. The highest of Ge content in polished rice was found in 'twice I' of Ge 100 ppm (300.29) at H + G stages, but the lowest was in 'once' with Ge 100 ppm ($142.24{\mu}g{\cdot}kg^{-1}$) at B stage. CONCLUSION: Se and Ge contents both in brown rice and polished rice treated with organic Se and Ge forms were higher than those of inorganic Se and Ge. Overall results concluded that the supplementation of organic Se and Ge contents in brown and polished rice contents were comparatively higher than the inorganic Se and Ge. This is results also proved that the foliar spray application of organic Se and Ge has positive nutritive effect on the rice for regular consumption.

Effects of Germanium Treatments on Nutrient Concentrations in Soil and Leaves and Leaf Characteristics in a 'Niitaka' Pear (Pyrus pyrifolia) Orchard (게르마늄 처리 방법이 '신고'배 과원의 토양과 엽의 무기성분 및 엽 특성에 미치는 영향)

  • Choi, Hyun-Sug;Kim, Tae-Yeon;Kim, Wol-Soo;Lee, Youn
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.2
    • /
    • pp.273-282
    • /
    • 2011
  • This study was conducted to investigate the effects of germanium (Ge) application types on the nutrient concentrations in soil and leaves and leaf characteristics in a 'Niitaka' pear orchard in 2004. Ge application included foliar application, fertigation in soils, trunk injection, and the three-combined application. All Ge treatedplots had lower soil $NO_3$-N, K, and Ca concentrations than those of control plot. Ge concentrations in Ge treated-soils were approximately 50 times higher than those of the control. Ge applications significantly increased area, dry weight, and specific weight in leaves compared to the control. Control treated-trees had greater K concentrations in leaves than the Ge treated-trees, which was oppositively observed for the leaf Ca; leaf Ca was higher on the Ge treated-trees than control. Leaf Ge concentrations were significantly higher on the Ge treated-trees compared to the control, except for the Ge fertigation. Ge concentrations in fruits were greater on the Ge-treated trees than the control trees.

Co-sputtering of Microcrystalline SiGe Thin Films for Optoelectronic Devices

  • Kim, Seon-Jo;Kim, Hyeong-Jun;Kim, Do-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.64.2-64.2
    • /
    • 2011
  • Recently, Silicon Germanium (SiGe) alloys have been received considerable attention for their great potentials in advanced electronic and optoelectronic devices. Especially, microcrystalline SiGe is a good channel material for thin film transistor due to its advantages such as narrow and variable band gap and process compatibility with Si based integrated circuits. In this work, microcrystalline silicon-germanium films (${\mu}c$-SiGe) were deposited by DC/RF magnetron co-sputtering method using Si and Ge target on Corning glass substrates. The film composition was controlled by changing DC and RF powers applied to each target. The substrate temperatures were changed from $100^{\circ}C$ to $450^{\circ}C$. The microstructure of the thin films was analyzed by x-ray diffraction (XRD) and Raman spectroscopy. The analysis results showed that the crystallinity of the films enhances with increasing Ge mole fraction. Also, crystallization temperature was reduced to $300^{\circ}C$ with $H_2$ dilution. Hall measurements indicated that the electrical properties were improved by Ge alloying.

  • PDF

Solution-based fabrication of germanium sulphide doped with or without Li ions for solid electrolyte applications

  • Jin, Byeong Kyou;Cho, Yun Gu;Shin, Dong Wook;Choi, Yong Gyu
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.110-113
    • /
    • 2012
  • Ge-S and Li-Ge-S powders were synthesized via solution-based process in order to employ chalcogenide-based solid electrolyte for use in Li secondary batteries. GeCl4 and thioacetamide in combination result in Ge-S powders of which major crystalline phase becomes GeS2 where the tetragonal and orthorhombic phases coexist after heat treatment. A chemical treatment using NaOH brings about the reduction of chlorine in the powders obtained. However, the heat treatment at 300 ℃ is more effective in minimizing the chlorine content. When lithium chloride is used as the precursor of Li ions, the LiCl powders are agglomerated with an inhomogeneous distribution. When Li2S is used, the Li-Ge-S powders are distributed more uniformly and the orthorhombic GeS2 phase dominates in the powders.

Effects of Organic Germanium on Metallothionein Induction in Liver and Kidney of Cadmium and Mercury Intoxicated Rats (유기 게르마늄의 투여가 카드뮴 및 수은에 중독된 흰쥐 간장 및 신장조직의 metallothionein 형성에 미치는 영향)

  • Lee, Hyo-Min;Chung, Yong
    • YAKHAK HOEJI
    • /
    • v.35 no.2
    • /
    • pp.99-110
    • /
    • 1991
  • This study was initiated to investigate the effects of organic germanium on cadmium and mercury intoxication. The effect was determined by the metallothionein induction in liver and kidney. Male rats (Sprague-Dawley) were treated with CdCI$_{2}$ (2mg/kg), HgCI$_{2}$ (1 mg/kg) and organic germanium (GE-132) (100 mg/kg) in single and in combination via intraperitoneal injection or intragastric administration every other days for 17 days. Experimental animals were sacrificed after 7, 12 and 17 days treatment. The serum transaminase activities (SGOT, SGPT), concentration of metal and metallothionein, metal-binding capacity of metallothionein in liver and kidney were determined and pathomorphological observations were undertaken. The combined treatment of GE-132 and CdCI$_{2}$ significantly decreased the increment of serum transaminase activities in rats treated with CdCI$_{2}$ only, but the combined treatment of GE-132 and HgCI$_{2}$ did not affect to activities of transaminases induced by mercury only. The concentration of metals (Cd and Hg) except Ge in the liver and kidney of rats increased with the time of treatment. Mercury concentration in kidney of rat treated with HgCI$_{2}$ only was significantly higher than the combined treatment of GE-132 and HgCI$_{2}$. The combined treatment of GE-132 and CdCI$_{2}$ significantly increased the concentration of metallothionein in liver compared to the CdCI$_{2}$ only, although the concentration of cadmium in liver were not significantly different between two groups. This indicates that GE-132 decreased toxicity of cadmium in liver by promoting metallothionein induction. There were no significant differences in metallothionein concentration in liver and kidney of rats between the combined treatment of GE-132 and HgCI$_{2}$ and HgCI$_{2}$ only. Metal-binding capacity of metallothionein varied with each time intervals in liver and kidney of metals treated rats except the liver of the combined treatment of GE-132 and CdCI$_{2}$. This finding explains the concentration of metallothionein in liver keeps abreast with the concention of metal. Furthermore, the combined treatment of GE-132and CdCl$_{2}$ revealed pathologically less changes in liver tissue than CdCl$_{2}$ only; the damages of liver cell, such as lobular necrosis and portal inflammation, were relieved and appeared more later. From the above results, organic germanium is considered to have some beneficial effect on the protection of liver from the cadmium intoxication.

  • PDF

Growth Characteristics and Germanium Absorption in Lettuce with Different Concentrations of Germanium in Soil (토양중 게르마늄 처리농도에 따른 상추 생육 및 게르마늄 흡수)

  • Lee, Seong-Tae;Lee, Young-Han;Bahn, Kyeong-Nyeo;Seo, Dong-Cheol;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.404-408
    • /
    • 2005
  • In order to obtain the basic information far agricultural utilization of Germanium (Ge), the growth characteristics and germanium absorption in lettuce were investigated with different concentration of germanium in soil. This experiment was carried out in the waster pot $(15,000^{-1}a)$. Germanium concentrations in soil for lettuce cultivation were maintained at 0.26, 2.0, 4.0, 6.0 and $8.0mg\;kg^{-1}$, respectively. The content of germanium in lettuce was increased with the increase of germanium concentration in soil. When lettuce was cultivated on soil supplemented with Ge $8.0mg\;kg^{-1}$, germanium phytotoxicity (reduction of plant height, No. of leaf and fresh weight) was not observed. When lettuce was cultivated on soil supplemented with Ge 4.0 and $8.0mg\;kg^{-1}$, it germanium content were found 0.75 and $1.27mg\;kg^{-1}$, respectively. Germanium absorption efficiency of lettuce was not different by germanium concentrations in the soil. When lettuce was cultivated on soil supplemented with Ge 2.0, 4.0 and $8.0mg\;kg^{-1}$, its absorption germanium efficiency was found 0.05, 0.04 and 0.03%, respectively. Germanium contents in different parts of lettuce cultivated with Ge $8.0mg\;kg^{-1}$ were $0.65mg\;kg^{-1}$ on inner leaf and $1.59mg\;kg^{-1}$ on outer leaf.

Fabrication and Structural Properties of Ge-Sb-Te Thin Film by MOCVD for PRAM Application (상변화 메모리 응용을 위한 MOCVD 방법을 통한 Ge-Sb-Te 계 박막의 증착 및 구조적인 특성분석)

  • Kim, Ran-Young;Kim, Ho-Gi;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.411-414
    • /
    • 2008
  • The germanium films were deposited by metal organic chemical vapor deposition using $Ge(allyl)_4$ precursors on TiAlN substrates. Deposition of germanium films was only possible with a presence of $Sb(iPr)_3$, which means that $Sb(iPr)_3$ takes a catalytic role by a thermal decomposition of $Sb(iPr)_3$ for Ge film deposition. Also, as Sb bubbler temperature increases, deposition rate of the Ge films increases at a substrate temperature of $370^{\circ}C$. The GeTe thin films were fabricated by MOCVD with $Te(tBu)_2$ on Ge thin film. The GeTe films were grown by the tellurium deposition at $230-250^{\circ}C$ on Ge films deposited on TiAlN electrode in the presence of Sb at $370^{\circ}C$. The GeTe film growth on Ge films depends on the both the tellurium deposition temperature and deposition time. Also, using $Sb(iPr)_3$ precursor, GeSbTe films with hexagonal structures were fabricated on GeTe thin films. GeSbTe films were deposited in trench structure with 200 nm*120 nm small size.