• Title/Summary/Keyword: Gerbil

Search Result 77, Processing Time 0.133 seconds

Neuroprotective Effect of Citri Pericarpium On Transient Global Ischemia in Gerbils

  • Kim Jiae;Jung Hyuk-Sang;Won Ran;Park Ji-Ho;Kang Chul hun;Sohn Nak-Won
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.3
    • /
    • pp.594-601
    • /
    • 2002
  • The current study was carried out to evaluate neuroprotective effects of Citri Pericarpium after transient global ischemia in gerbils. Male Mongolian gerbils weighing 60-80g were anesthetized with 2% isoflurane mixed with 30% oxygen and 70 % nitrogen. Bilateral common carotid arteries were occluded for 5 minute with microaneurysm dips. On 3 or 7 days after ischemic surgery, the gerbils were sacrificed. The brain were removed, embedded in paraffin and sectioned at 8㎛-thickness. Gerbils that received ischemic insult for 5 min showed extensive neuronal damage in the hippocampal CA1 region, and the number of viable neuronal cell was 51.0±2.5/mm, 32.2% of normal group at 7 days after ischemic surgery. In animals that underwent the extract of Citri Pericarpium treatment, the number of viable neuronal cell were significantly better preserved at 110.58±3.58/mm, 72.0% of normal group than those of ischemic group (P<0.01). In the immunohistochemistry of Bax and Bcl-2, the Citri Pericarpium treated group down-regulated the expression of Bax protein at 72hr after transient global ischemia. In contrast, Bcl-2 protein level was not changed. The appearance in TUNEL assay is similar to the pattern of Bax protein. The water extract of Citri Pericarpium significantly reduced the number of TUNEL-positive CA1 pyramidal neurons at 72hr. The results suggest that Citri Pericarpium has potential neuroprotective effects in the transient global ischemia and the increase in the ratio of Bcl-2 to Bax may contribute to the anti-apoptotic effect of Citri Pericarpium.

The Effects of Achyranthis Radix on Short-term Memory and Apoptosis in the Hippocampus of the Gerbil with Transient Global Ischemia (우슬이 뇌허혈 유발 모래쥐의 해마에서 신경세포 사멸과 단기기억력에 미치는 영향)

  • Yoon, Hyun-Seok;Song, Yun-Kyung;Lim, Hyung-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.2
    • /
    • pp.15-30
    • /
    • 2011
  • Objectives : The present study investigated the effects of Achyranthis Radix on short-term memory, apoptotic neuronal cell death in the hippocampus following transient global ischemia in gerbils. Methods : The gerbils were divided into 5 groups(n=10); Sham operation group, ischemia-induced group, ischemia-induced and 50 mg/kg Achyranthis Radix-treated group, ischemia-induced and 100 mg/kg Achyranthis Radix-treated group, ischemia-induced and 200 mg/kg Achyranthis Radix-treated group. For this study, a step-down avoidance task, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL) assay, immunohistochemistry for caspase-3 and BrdU(5-Bromo-2'-deoxyuridine), and western blotting for bax, bcl-2 were performed. Results : The results revealed that ischemic injury impaired short-term memory and increased apoototic neuronal cell death in the hippocampal CA1(cornu ammonis area 1) region. Ischemic injury enhanced cell proliferation in the hippocampal CA1 region, the compensatory and adaptive process for excessive apoptosis. Achyranthis Radix treatment improved short-term memory by suppressing ischemia-induced apoptotic neuronal cell death in the hippocampal CA1 region. Also, Achyranthis Radix suppressed the ischemia-induced increase in cell proliferation in the hippocampal CA1 region. Conclusions : We showed that Achyranthis Radix alleviates ischemia-induced apoptotic neuronal cell death, thus facilitates the recovery of short-term memory impairment induced by ischemic cerebral injury.

Neuroprotective effects of the antioxidant action of 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride against ischemic neuronal damage in the brain

  • Ha, Seung Cheol;Han, A Reum;Kim, Dae Won;Kim, Eun-A;Kim, Duk-Soo;Choi, Soo Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.46 no.7
    • /
    • pp.370-375
    • /
    • 2013
  • Ischemia is characterized by oxidative stress and changes in the antioxidant defense system. Our recent in vitro study showed that 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride protects cortical astrocytes against oxidative stress. In the current study, we examined the effects of 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride on ischemia-induced neuronal damage in a gerbil ischemia/reperfusion models. Extensive neuronal death in the hippocampal CA1 area was observed 4 days after ischemia/reperfusion. Intraperitoneal injection of 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride (0.3 mg/kg body weight) significantly prevented neuronal death in the CA1 region of the hippocampus in response to transient forebrain ischemia. 2-Cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride administration reduced ischemia-induced increases in reactive oxygen species levels and malondialdehyde content. It also attenuated the associated reductions in glutathione level and superoxide dismutase, catalase, and glutathione peroxidase activities. Taken together, our results suggest that 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride protects against ischemia-induced neuronal damage by reducing oxidative stress through its antioxidant actions.

Ginsenoside Rb2 suppresses the glutamate-mediated oxidative stress and neuronal cell death in HT22 cells

  • Kim, Dong Hoi;Kim, Dae Won;Jung, Bo Hyun;Lee, Jong Hun;Lee, Heesu;Hwang, Gwi Seo;Kang, Ki Sung;Lee, Jae Wook
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.326-334
    • /
    • 2019
  • Background: The objective of our study was to analyze the neuroprotective effects of ginsenoside derivatives Rb1, Rb2, Rc, Rd, Rg1, and Rg3 against glutamate-mediated neurotoxicity in HT22 hippocampal mouse neuron cells. Methods: The neuroprotective effect of ginsenosides were evaluated by measuring cell viability. Protein expressions of mitogen-activated protein kinase (MAPK), Bcl2, Bax, and apoptosis-inducing factor (AIF) were determined by Western blot analysis. The occurrence of apoptotic and death cells was determined by flow cytometry. Cellular level of $Ca^{2+}$ and reactive oxygen species (ROS) levels were evaluated by image analysis using the fluorescent probes Fluor-3 and 2',7'-dichlorodihydrofluorescein diacetate, respectively. In vivo efficacy of neuroprotection was evaluated using the Mongolian gerbil of ischemic brain injury model. Result: Reduction of cell viability by glutamate (5 mM) was significantly suppressed by treatment with ginsenoside Rb2. Phosphorylation of MAPKs, Bax, and nuclear AIF was gradually increased by treatment with 5 mM of glutamate and decreased by co-treatment with Rb2. The occurrence of apoptotic cells was decreased by treatment with Rb2 ($25.7{\mu}M$). Cellular $Ca^{2+}$ and ROS levels were decreased in the presence of Rb2, and in vivo data indicated that Rb2 treatment (10 mg/kg) significantly diminished the number of degenerated neurons. Conclusion: Our results suggest that Rb2 possesses neuroprotective properties that suppress glutamate-induced neurotoxicity. The molecular mechanism of Rb2 is by suppressing the MAPKs activity and AIF translocation.

Oxidative Stress and HSP70 Expression Upon Cerebral Isehemia-Reperfusion in Mongolian Gerbil (모래쥐에서 뇌의 허혈/재관류에 의한 산화성 스트레스 형성과 HSP70의 발현)

  • Park, Young-Mee;Kim, Chul-Hoon;Do, Yun-Jeong;Choi, Eun-Mi;Ahn, Young-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.335-345
    • /
    • 1996
  • A critical role of oxygen-derived free radicals has been implicated in ischemia/reperfusion (I/R)-induced brain damage. In this study, we have produced experimental I/R to the brains of Mongolian gerbil (Meriones unguiculatus) by a transient occlusion and release of the common carotid arteries. We have attempted to determine whether the oxidative stress is generated upon I/R and whether this oxidative stress is linked to the cell damage. Since hippocampus has been suggested as one of the most vulnerable regions of the brain to the oxidative stress, we analyzed samples from hippocampus in comparison with those from cortex. In addition, we have examined the expression of heat shock protein 70kD species (HSP70) in these regions in order to evaluate a possible role of this protein in I/R-induced brain damage. To determine whether the oxidative stress is produced upon I/R, we measured the glutathione oxidation, GSSG/ (GSH + 2xGSSG), as an index of oxidative stress. We found an increase of the glutathione oxidation primarily in hippocampus upon I/R. To determine whether this oxidative stress is linked to the cell damage, we measured the degree of lipid peroxidation upon I/R. We found an increase of lipid peroxidation in both regions. However, the magnitude of increases was greater in hippocampus than in cortex. In addition, we found that changes in both the magnitude and the temporal patterns of glutathione oxidation closely correlated with those of lipid peroxidation. Our study provides biochemical evidences that the oxidative stress is generated upon I/R and this oxidative stress is linked to the oxidative cell damage. Our study also provides evidences that the degree of oxidative stress as well as oxidative cell damage is greater in hippocampus than in cortex. We could not find difference in the basal level of HSP70 expression between hippocampus and cortex, indicating that the intrinsic vulnerability of hippocampus cannot be explained by the lower level of HSP70 expression. We did find, however, that the induction of HSP70 expression upon I/R was impaired in the hippocampus. This impairment appeared to be at the transcriptional level. These results suggest that the measurement of HSP70 induction may be employed as a useful predictor of differential cellular susceptibilities to the I/R-induced brain damage.

  • PDF

Changes of Glutamate and Polyamine Levels of Hippocampal Microdialysates in Response to Occlusion of Both Carotid Arteries in Mongolian Gerbils (뇌허혈 손상에 있어서 해마-세포외액내 Glutamate와 Polyamine 농도의 변동에 관한 연구)

  • Shin, Kyung-Ho;Kim, Hyung-Gun;Choi, Sang-Hyun;Cho, So-Hyun;Chun, Yeon-Sook;Chun, Boe-Gwun
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.3
    • /
    • pp.273-289
    • /
    • 1994
  • Reversible brain ischemia was produced by occluding both common carotid arteries for 5 min, and the effects of aminoguanidine (AG), $DL-{\alpha}-difluoromethylornithine$ (DFMO), MK-801, and nimodipine (NM) on the ischemia induced changes of the polyamine, glutamate and acetylcholine levels in the hippocampus CA1 subfield and the specific $[^3H]\;MK-801$ binding to the hippocampus synaptosomal membranes were studied with a histological reference of the cresyl violet stained hippocampus. The basal putrescine level $(PT:\;74.4{\pm}8.8\;nM)$ showed a rapid increase (up to 1.7 fold) for 5 min of ischemia, remained significantly increased for 6 h, and then resumed the further increase to amount gradually up to about 3 fold 96 h after recirculation. However, the level of spermidine was little changed, and the spermine level showed a transient increase during ischemia followed by a sustained decrease to about 40% of the preischemic level after recirculation. The increase of PT level induced by brain ischemia was enhanced with AG or MK-801, but it was reduced by DFMO or NM. The basal glutamate level $(GT:\;0.90{\pm}0.l4\;{\mu}M)$ rapidly increased to a peak level of $8.19{\pm}1.14\;{\mu}M$ within 5 min after onset of the ischemia and then decreased to the preischemic level in about 25 min after recirculation. And NM reduced the ischemia induced increase of GT level by about 25%, but AG, DFMO and MK-801 did not affect the GT increase. The basal acetylcholine level $(ACh:\;118.0{\pm}10.5\;{\mu}M)$ did little change during/after brain ischemia and was little affected by AG or NM. But DFMO and MK-801, respectively, produced the moderate decrease of ACh level. The specific $[^3H]\;MK-801$ binding to the hippocampus synaptosomal membrane was little affected by brain ischemia for 5 min. The control value (78.9 fmole/mg protein) was moderately decreased by AG and MK-801, respectively but was little changed by DFMO or NM. The microscopic findings of the brains extirpated on day 7 after ischemia showed severe neuronal damage of the hippocampus, particularly CA1 subfield. NM and AG moderately attenuated the delayed neuronal damage, and DFMO, on the contrary, aggravated the ischemia induced damage. However, MK-801 did not protect the hippocampus from ischemic damage. These results suggest that unlike to the mode of anti-ischemic action of NM, AG might protect the hippocampus from ischemic injury as being negatively regulatory on the N-methyl-D-aspartate (NMDA) receptor function in the hippocampus.

  • PDF

Effect of Recombinant CagL Immunization on the Gastric Diseases Induced by Helicobacter pylori in Mongolian gerbils (CagL 재조합 단백질 접종후에 Mongolian gerbil에서 나타나는 Helicobacter pylori 감염에 대한 반응)

  • Bak, Eun-Jung;Jang, Sung-Il;Choi, Yun-Hui;Kim, Jin-Moon;Kim, Ae-Ryun;Kim, Ji-Hye;Woo, Gye-Hyeong;Yoo, Yun-Jung;Lee, Sung-Haeng;Cha, Jeong-Heon
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.109-115
    • /
    • 2012
  • Helicobacter pylori is an important factor of chronic gastritis, digestive ulcer, and stomach cancer. CagL, a virulence factor of H. pylori, is well-known as a pilus protein which acts as adhesion to host cell and a component of Type 4 secretion system. In this study, we evaluated the protective response of recombinant CagL protein (rCagL) using Mongolian gerbil animal model for H. pylori infection. The cagL gene was cloned from 26695 H. pylori followed by over-expression and purification of the protein in E. coli. Mongolian gerbils were immunized with rCagL protein mixed with aluminum adjuvant via intramuscular injections once a week during 4 weeks. At a week after the last immunization, the Mongolian gerbils were administrated with H. pylori 7.13 strain into the stomach and sacrificed to measure antibody titer on rCagL by ELISA and bacterial colonization in the stomach, and to examine the histopathological changes and cytokine expression at 6 week after challenge. Antibody titers on recombinant protein were significantly increased from a week after the first immunization. There was no significant change of the number of bacterial colony between control group and immunized group. The relative stomach weight was significantly decreased in immunized group, but the significant change of histopathological assessment was not observed in the stomach. Cytokine expression such as IL-$1{\beta}$ and KC also was not significantly different between control and immunized groups. These results indicate that rCagL could effectively induce the formation of the specific IgG antibodies. However, bacterial colonization and histopathological lesions could not be inhibited by the immunization in the stomach, indicating not enough protection against H. pylori infection. We consider that along with CagL other adequate antigens could be needed stimulating immune response and inducing protective effects against gastric disease, and also a better adjuvant could be considered.

The Effects of Sea Cucumber as an Anti-gastritis, Anti-gastric Ulcer, and Anti-Helicobater (해삼의 항위염, 항위궤양 및 항헬리코박터 효과)

  • Oh, Hong-Geun;Moon, Dae-In;Kim, Jung-Hoon;Kang, Young-Rye;Park, Jung-Woo;Seo, Min-Young;Park, Sang-Hoon;Kang, Yang-Gyu;Choe, Chung-Hyeon;Park, In-Sun;Kim, Ju;Yu, Kang-Yeol;Seol, Eu-Ddeum;Kim, Ok-Jin;Lee, Hak-Yong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.5
    • /
    • pp.605-611
    • /
    • 2012
  • Sea cucumber, $Stichopus$ $japonicus$, is used not only as an outstanding tonic food but also as a traditional medicine for the treatment of asthma, hypertension, rheumatism, anemia, and sinus congestion. The purpose of this study was to examine sea cucumber as an anti-gastritis and anti-gastric ulcer in HCl-ethanol-induced gastric and $H.$ $pylori$-infected animal models. Thirty 7-week-old SD rats and Mongolian gerbils were divided into normal (Nor, n=6), control (Con, 60% HCl-ethanol+water, n=6), groupI (DSCI, 60% HCl-ethanol+sea cucumber 30 mg/kg, n=6), groupII (DSCII, 60% HCl-ethanol+sea cucumber 100 mg/kg, n=6), and group III (DSCIII, 60% HCl-ethanol+sea cucumber 300 mg/kg, n=6). Sea cucumber significantly suppressed gastric lesions and ulcers in the 60% HCl-ethanol-induced gastric model. Especially, 100 mg/kg of sea cucumber showed significantly inhibitory effects. In histopathological analysis of the $H.$ $pylori$ model, we found that sea cucumber augmented the eradication rates of $H.$ $pylori$ and attenuated gastric ulcer formation. Our results suggest that sea cucumber has inhibitory effects on gastritis and gastric ulcers. In addition, sea cucumber can be applied for the treatment of $H.$ $pylori$.

Immunohistochemical study of the gastrointestinal endocrine cells in the Mongolian Gerbils, Meriones unguiculatus (몽골리안 저빌(Meriones unguiculatus)의 위장관 내분비 세포에 대한 면역조직화학적 연구)

  • Lee, Jae-hyun;Lee, Hyeung-sik;Ku, Sae-kwang;Park, Ki-dae;Kim, Kil-soo
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.4
    • /
    • pp.653-660
    • /
    • 2000
  • In order to study the regional distribution and relative frequency of the immunoreactive endocrine cells in the gastrointestinal tract of the Mongolian gerbil, Meriones unguiculatus, the gastrointestinal tract was divided into 9 portions (cardia, fundus, pylorus, duodenum, jejunum, ileum, cecum, colon and rectum) and immunostained by immunohistochemical (PAP) method using 8 types of specific antisera against cholecystokinin (CCK)-8, gastrin, secretin, pancreatic polypeptide(PP), somatostatin, serotonin, glucagon and insulin. CCK-8-, gastrin-, somatostatin- and serotonin-immunoreactive cells were demonstrated in this study. These immunoreactive cells were found in the gastric gland regions of the pylorus or between parietal and chief cells of the fundus with round to spherical shaped, and in the interepithelial regions of the intestinal tract with spherical to spindle shaped except for jejunum where some of immunoreactive cells were also observed in the intestinal glands with round to spherical shaped. CCK-8-immunoreactive cells were restricted to the pylorus and duodenum with numerous and a few frequency, respectively. Gastrin-immunoreactive cells were restricted to the pylorus with numerous frequency. Similar to those of gastrin-immunoreactive cells, somatostatin-immunoreactive cells were restricted to pylorus with moderate frequency. Serotonin-immunoreactive cells were detected throughout whole gastrointestinal tract except for cardia and cecum with moderate or numerous frequency. However, no secretin-, PP-, glucagon- and insulin-immunoreactive cells were observed in this study. From these results, the appearance type, regional distribution and relative frequency of immunoreactive endocrine cells in the gastrointestinal tract of the Mongolian gerbils were somewhat lowered or restricted compared to those of other mammals and these differences were might be caused by feeding habits and species specification.

  • PDF

Imipramine enhances neuroprotective effect of PEP-1-Catalase against ischemic neuronal damage

  • Kim, Dae-Won;Kim, Duk-Soo;Kim, Mi-Jin;Kwon, Soon-Won;Ahn, Eun-Hee;Jeong, Hoon-Jae;Sohn, Eun-Jeong;Dutta, Suman;Lim, Soon-Sung;Cho, Sung-Woo;Lee, Kil-Soo;Park, Jin-Seu;Eum, Won-Sik;Hwang, Hyun-Sook;Choi, Soo-Young
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.647-652
    • /
    • 2011
  • The protein transduction domains have been reported to have potential to deliver the exogenous molecules, including proteins, to living cells. However, poor transduction of proteins limits therapeutic application. In this study, we examined whether imipramine could stimulate the transduction efficiency of PEP-1 fused proteins into astrocytes. PEP-1-catalase (PEP-1-CAT) was transduced into astrocytes in a time- and dose-dependent manner, reducing cellular toxicity induced by $H_2O_2$. Additionally, the group of PEP-1-CAT + imipramine showed enhancement of transduction efficiency and therefore increased cellular viability than that of PEP-1-CAT alone. In the gerbil ischemia models, PEP-1-CAT displayed significant neuroprotection in the CA1 region of the hippocampus. Interestingly, PEP-1-CAT + imipramine prevented neuronal cell death and lipid peroxidation more markedly than PEP-1-CAT alone. Therefore, our results suggest that imipramine can be used as a drug to enhance the transduction of PEP-1 fusion proteins to cells or animals and their efficacies against various disorders.