• Title/Summary/Keyword: Geothermal heat pump

Search Result 339, Processing Time 0.03 seconds

Simulation of Open-Loop Borehole Heat Exchanger System using Sand Tank Experiment and Numerical Model (토조 및 수치모형을 이용한 개방형 지중 열교환 시스템 모의)

  • Lee, Seong-Sun;Bae, Gwang-Ok;Lee, Kang-Kun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.489-492
    • /
    • 2007
  • Understanding the thermohydraulic processes in the aquifer is necessary for a proper design of the aquifer thermal energy utilization system under given conditions. Experimental and numerical test were accomplished to evaluate the relationship between the geothermal heat exchanger operation and hydrogeological conditions in the open-loop geothermal system. Sand tank experiments were designed to investigate the open-loop geothermal system. Water injection and extract ion system as open-loop borehole heat exchanger was applied to observe the temperature changes in time at injection well, extraction well and ambient groundwater. The thermohydraulic transfer for heat storage was simulated using FEFLOW for two cases of extraction and injection phase operation in sand tank model. As one case, the movement of the thermal plume was simulated with variable locations of injection and extraction well. As another case, the simulation was performed with fixed location of injection and extraction well. The simulation and experimental results showed that the temperature distribution depends highly on the injected water temperature and the length of injection time and the groundwater flow and pumping rate sensitively affect the heat transfer.

  • PDF

A Study of the Influence of Condensing Water Temperature on Low Temperature Geothermal Power Generation (응축수온도가 저온지열발전 성능에 미치는 영향 연구)

  • Kim, Jin-Sang;Lee, Chung-Kook
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.3 no.2
    • /
    • pp.17-23
    • /
    • 2007
  • Geothermal energy is used in various forms, such as power generation, direct use, and geothermal heat pumps. High temperature geothermal energy sources have been used for power generation for more than a century. Recent technical advances in power generation equipments make relatively low temperature geothermal energy to be available for power generation. In these applications, lower temperature geothermal energy source makes smaller difference between condensing water temperature and it. Various condensing water temperatures were investigated in analyzing its influence on power generation performance. Condensing water temperature of organic Rankine cycle imposed greater influence on power generation and its performance in lower temperature geothermal power generation.

  • PDF

Performance Analysis of Energy-Slab Ground-Coupled Heat Exchanger (에너지슬래브 지중열교환기의 성능 분석)

  • Choi, Jong-Min;Sohn, Byong-Hu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.6
    • /
    • pp.487-496
    • /
    • 2012
  • Recently, utilization of building foundations as ground-coupled heat exchangers has attracted much attention because they reduce the cost and enhance the heat transfer. The objective of this study is to evaluate the performance of energy-slab ground-coupled heat exchanger installed in a commercial building. In order to demonstrate the energy transfer characteristics of the energy-slab, experiments were conducted from October 2010 to September 2011. The 1-year measurement results showed that the mean EWTs of brine returning from the energy-slab were $9.6^{\circ}C$ in heating season and $24.9^{\circ}C$ in cooling season, which were in a range of design target temperatures. In addition, the geothermal heat pump system with the energy-slab showed on-off operation according to the setting temperatures of secondary fluid in water storage tank. The results also showed that the energy-slab extracted heat of 198.6 kW from the ground and injected heat of 318.9 kW to the ground, respectively.

Study on the characteristic of heat exchange for vertical geothermal system using the numerical simulation (수치 시뮬레이션을 이용한 수직밀폐형 지열시스템의 채열특성에 관한 연구)

  • Nam, Yu-Jin;Oh, Jin-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.66-72
    • /
    • 2014
  • Ground source heat pump system can achieve high efficiency of performance by utilizing annually constant underground temperature to provide heat source for space heating and cooling. Generally, the depth of constant-temperature zone under the ground depends on surface heat flux and soil properties. The deeper the ground heat exchanger is installed, the higher the heat exchange rate can be acquired. However, in order to optimally design the system, it is necessary to consider both the installation cost and the system performance. In this study, performance analysis of ground source heat pump system according to the depth has been conducted through the case study.

Greenhouse Heating Technology Development by using Riverbank Filtration Water (강변여과수를 이용한 온실난방기술 개발)

  • Moon, Jong-Pil;Lee, Sung-Hyoun;Kwon, Jin-Kyung;Kang, Youn-Ku;Ryou, Young-Sun;Lee, Su-Jang
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.145-152
    • /
    • 2011
  • In order to heat greenhouse nearby river channel, riverbank filtration water source heat pump was developed for getting plenty of heat flux from geothermal energy. Recharging well, thermal storage tank with separating insulation plate and filtering tank for eliminating iron, manganese were mainly developed for making the coefficient of performance (COP) of heat pump higher. Heating system using riverbank filtration water source heat pump was installed at a paprika greenhouse in the Jinju region where a single fold of vinyl cover and 2 layers of horizontal thermal curtain were installed as a part of temperature keeping and heat insulation with a greenhouse area of 3,185 $m^2$. 320,000 kcal/h was supplied for performing a site application tests. A greenhouse heating test was performed from Feb. 1, 2011 to Apr. 30, 2011. As the result of that, COPh of the heat pump was measured in the range of 4.0~4.5, while COPS of the system was represented as 2.9~3.3. COP measured of the heat pump was very good and well responded to indoor heating temperature of the environment control system of a greenhouse.

Regional Distribution of Thermal Conductivity of Ground Heat Exchanger for Geothermal Heat Pump System (지열 냉난방 시스템을 위한 열전도도의 지역별 분포)

  • Lim, Hyo-Jae;Shon, Byong-Hu;Jung, Kye-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.511-514
    • /
    • 2007
  • This study was performed to construct a geothermal data base about thermal conductivity of ground heat exchanger and thermal properties of grouting material which used to refill the borehole. We have acquired geothermal data sets from 39 sites over wide area of South Korea except to Jeju island. From data analysis, the range of thermal conductivity is $1.5{\sim}4.0$ W/mK. It means that thermal conductivity varies with grouting material as well as regional geology and ground water system.

  • PDF

Numerical Analysis of the Effect of Ground Source Heat Pump Systems on the Underground Temperature (지열 시스템의 도입이 지중온도환경에 미치는 영향에 대한 해석적 검토)

  • Nam, Yujin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.8
    • /
    • pp.427-431
    • /
    • 2013
  • Ground heat pump systems utilize the annually stable underground temperature to supply heat for space heating and cooling. The underground temperature affects not only the underground ecosystem, but also the performance of these systems. However, in spite of the widespread use of these systems, there have been few researches on the effect of the systems on underground temperature. In this research, case studies with numerical simulation have been conducted, in order to estimate the effect of ground heat pump systems on underground temperature. The simulation was coupled with the ground water-ground heat transfer model and the ground surface heat transfer model. In the result, it was found that the underground change depends on the heat transfer from the ground surface, the heat exchange rate, and the heat conductivity of soil.

Estimation of Greenhouse Heating performance for Ground Filtration Water Source Heat Pump (강변여과수 열원 히트펌프 온실난방 성능시험)

  • Moon, Jongpil;Lee, Sunghyoun;Kwon, Jinkyung;Kang, YounKoo;Lee, Sujang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.200.2-200.2
    • /
    • 2011
  • This study was carried out in order to estimate the greenhouse performance for Ground filtration water source heat pump which was installed for supplying the heat to the paprika greenhouse in Jinju city. Experimental area of Greenhouse was $3,300m^2$, For keeping the heat from greenhouse, single plastic covering and double thermal screen was installed. With considering all of greenhouse insulation condition and designed heatng temperature, heating capacity for experimental greenhouse was calculated as 320,000kcal/hr. Coefficient of performance(COP) of Ground filtration water source heat pump was gauged and greenhouse heating performance was tested from Febuary 1 to Febuary 28 in 2011. The result showed that COP of heat pump was in the range of 3.7~4.7 and COP of heating system was in the range of 3.0~3.5. The vaule of COP was very high and the temperature inside greenhouse was well corresponded to the setting temperature of greenhouse environment controlling system. lots of Ground filtration water made the the number of well fewer and the expense for installing heating system cheaper than that of geothermal system used custmarily. and this system went beyond the limitation of intaking amount of groundwater in normal Groundwater source heat pump.

  • PDF

Evaluation of Borehole Thermal Resistance in Ground Heat Exchanger (지중 열교환기의 보어홀 열저항 산정에 관한 연구)

  • Yoon, Seok;Lee, Seung-Rae;Kang, Han-Byul;Go, Gyu-Hyun;Kim, Min-Jun;Shin, Ho-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.10
    • /
    • pp.49-56
    • /
    • 2013
  • The use of geothermal energy has been increased for economic and environmental friendly utilization. Ground thermal conductivity and borehole thermal resistance are very important parameters in the design of geothermal heat pump system. This paper presents an experimental study of heat exchange rate of U and W type ground heat exchangers (GHEs) measured by thermal performance tests (TPTs). U and W type GHEs were installed in a partially saturated dredged soil deposit, and TPTs were conducted to evaluate heat exchange rates under 100-hr continuous operation condition. The heat exchange rates were also calculated by analytical models to estimate borehole thermal resistances and were compared with experimental results. It comes out that multi-pole and equivalent diameter (EQD) models resulted in more accurate agreement than shape factor (SF) model which is currently more often used.