• Title/Summary/Keyword: Geothermal heat exchange system

Search Result 53, Processing Time 0.027 seconds

Study on Fresh Air Load Reduction System by Using Geothermal Energy - Reducing Effect of a Fresh Air Load by Combining with Air-heated Solar Collector - (지열을 이용한 공조외기부하저감 시스템에 관한 연구 - 공기식 집열기와의 병용에 의한 공조외기부하저감 효과 -)

  • Son Won-Tug;Lee Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1218-1226
    • /
    • 2004
  • This paper presents thermal behaviors and performances of a fresh air load reduction system by using earth tube system combined with air-heated solar collector. The earth tube system reduces a fresh air load by heat exchange with soil throughout the year. In the previous experimental research, it was clarified that the earth tube system was very useful as a fresh air load reduction system. However, since outlet temperature of the fresh air which was heated by earth tube system was below 15$^{\circ}C$ in winter, it is not suitable to introduce the fresh air into the place of residence directly. Therefore, a simulation model using the simple heat diffusion equation was used to examine a rising effect of outlet air temperature in winter by combining with air-heated solar collector. An improvement of annual performance by control of operation is also quantitatively examined. In conclusion, it is confirmed that its performance is improved by control of operation throughout the year and outlet air temperature rose by combining with air-heated solar collector.

Numerical Study of Heat Transfer Efficiency, Performace and Mechanical Behavior induced by Thermal Stress of Energy Pile (에너지 파일의 열교환 효율 및 성능, 열응력에 의한 역학적 거동 평가)

  • Min, Sun-Hong;Lee, Chul-Ho;Park, Moon-Seo;Koh, Hyung-Seon;Choi, Hang-Seok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.6 no.2
    • /
    • pp.9-14
    • /
    • 2010
  • The ground source heat pump system is increasingly being considered as an alternative to traditional heating and cooling systems to reduce the emission of ground house gases. In this paper, A series of numerical analysis for energy piles has been performed focusing on heat transfer efficiency, performance and thermal stress. Results of numerical analyses for the W-shape type shows more efficient heat exchange transfer than the coil type. From results of the thermo-mechanical analysis, it is shown that the concentration of thermal stress occurs around the circulating pipe and the interfaces between different materials. The largest deformation caused by thermal stress is observed in the energy pile.

Development of Thermal-Hydro Pipe Element for Ground Heat Exchange System (지중 열교환 시스템을 위한 열-수리 파이프 요소의 개발)

  • Shin, Ho-Sung;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.65-73
    • /
    • 2013
  • Ground-coupled heat pump system has attracted attention as a promising renewable energy technology due to its improving energy efficiency and eco-friendly mechanism for space cooling and heating. Pipes buried in the ground play a role of direct thermal interaction between circulating fluid inside the pipe and surrounding soils in the geothermal exchange system. However, both complexities of turbulent flow coupling thermal-hydraulic phenomena and very long aspect ratio of the pipe make it difficult to model the heat exchange system directly. Energy balance for fluid flow inside the pipe was derived to model thermal-hydraulic phenomena, and one-dimensional pipe element was proposed through Galerkin formation and time integration of the equation. Developed element is combined to pre-developed FEM code for THM phenomena in porous media. Numerical results of Thermal Response Test showed that line-source model overestimates equivalent thermal conductivity of surrounding soils due to thermal interaction between adjacent pipes and finite length of the pipe. Thus, inverse analysis for the TRT simulation was conducted to present optimal transformation matrix with utmost convergence.

Heating Performance Prediction of Low-depth Modular Ground Heat Exchanger based on Artificial Neural Network Model (인공신경망 모델을 활용한 저심도 모듈러 지중열교환기의 난방성능 예측에 관한 연구)

  • Oh, Jinhwan;Cho, Jeong-Heum;Bae, Sangmu;Chae, Hobyung;Nam, Yujin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.3
    • /
    • pp.1-6
    • /
    • 2022
  • Ground source heat pump (GSHP) system is highly efficient and environment-friendly and supplies heating, cooling and hot water to buildings. For an optimal design of the GSHP system, the ground thermal properties should be determined to estimate the heat exchange rate between ground and borehole heat exchangers (BHE) and the system performance during long-term operating periods. However, the process increases the initial cost and construction period, which causes the system to be hindered in distribution. On the other hand, much research has been applied to the artificial neural network (ANN) to solve problems based on data efficiently and stably. This research proposes the predictive performance model utilizing ANN considering local characteristics and weather data for the predictive performance model. The ANN model predicts the entering water temperature (EWT) from the GHEs to the heat pump for the modular GHEs, which were developed to reduce the cost and spatial disadvantages of the vertical-type GHEs. As a result, the temperature error between the data and predicted results was 3.52%. The proposed approach was validated to predict the system performance and EWT of the GSHP system.

Numerical Analysis of the Effect of Ground Source Heat Pump Systems on the Underground Temperature (지열 시스템의 도입이 지중온도환경에 미치는 영향에 대한 해석적 검토)

  • Nam, Yujin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.8
    • /
    • pp.427-431
    • /
    • 2013
  • Ground heat pump systems utilize the annually stable underground temperature to supply heat for space heating and cooling. The underground temperature affects not only the underground ecosystem, but also the performance of these systems. However, in spite of the widespread use of these systems, there have been few researches on the effect of the systems on underground temperature. In this research, case studies with numerical simulation have been conducted, in order to estimate the effect of ground heat pump systems on underground temperature. The simulation was coupled with the ground water-ground heat transfer model and the ground surface heat transfer model. In the result, it was found that the underground change depends on the heat transfer from the ground surface, the heat exchange rate, and the heat conductivity of soil.

A Study on Development of a Ground-Source Heat Pump System Utilizing Pile Foundation of a Building (건물 기초를 이용한 지중열 공조시스템의 개발에 관한 연구 (1))

  • Ryozo, Ooka;Nam, Yu-Jin;Kentaro, Sekine;Mutsumi, Yokoi;Yoshiro, Shiba;Hwang, Suck-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.148-154
    • /
    • 2005
  • Ground-source (Geothermal) heat pump (GSHP) systems can achieve a higher coefficient of performance than conventional air-source heat pump (ASHP) systems. However, GSHP systems are not widespread in Japan because of their expensive boring costs. The authors have developed a GSHP system that employs the cast-in-place concrete pile foundations of a building as heat exchangers in order to reduce the initial boring cost. In this system, eight U-tubes are arranged around the surface of a cast-in-place concrete pile foundation. The heat exchange capability of this system, subterranean temperature changes and heat pump performance were investigated in a foil-scale experiment. As a result, the average values for heat rejection were 186${\sim}$201 W/m (for pile, 25 W/m per Pair of tubes) while cooling. The average COP of this system was 4.6 while cooling; rendering this system more effective in energy saving terms than the typical ASHP systems. The initial cost of construction per unit for heat extraction and rejection is ${\yen}$72/W for this system, whereas it is f300/W for existing standard borehole systems.

  • PDF

A Study on Development of a Ground-Source Heat Pump System Utilizing Cast-in-place Concrete Pile Foundation of a Building (현장타설형 건물 기초를 이용한 지중열 공조시스템의 성능평가에 관한 연구)

  • Hwang, Suck-Ho;Nam, Yu-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.9
    • /
    • pp.641-647
    • /
    • 2010
  • Ground-source(Geothermal) heat pump(GSHP) systems can achieve a higher coefficient of performance than conventional air-source heat pump(ASHP) systems. However, GSHP systems are not widespread because of their expensive installation costs. The authors have developed a GSHP system that employs the cast-in-place concrete pile foundations of a building as heat exchangers in order to reduce the initial cost. In this system, eight U-tubes are arranged around the surface of a cast-in-place concrete pile foundation. The heat exchange capability of this system, subterranean temperature changes and heat pump performance were investigated in a full-scale experiment. As a result, the average values for heat rejection were 186~201 W/m(per pile, 25 W/m per pair of tubes) while cooling. The average COP of this system was 4.6 while cooling; rendering this system more effective in energy saving terms than the typical ASHP systems.

Study on long-term monitoring of heat exchanger installed in the tunnel lining (터널 라이닝 내부에 설치한 열교환기의 현장모니터링 연구)

  • Lee, Chulho;Park, Moonseo;Choi, Hangseok;Sohn, Byunghu;Jeoung, Jaehyeung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.195.1-195.1
    • /
    • 2011
  • This paper presents an experimental study on a new potential geothermal energy source obtained from tunnel structures. An "energy textile", which is a textile-type ground heat exchanger, was fabricated between a shotcrete layer and a guided drainage geotextile in the tunnel lining system. To examine the long-term thermal behavior of the energy textile, the difference in temperatures of the inlet and outlet fluid circulating through the heat exchange pipe within the energy textile was monitored using a constant-temperature water bath. Daily heat exchange rate of the energy textile during cooling operation was estimated from the measured temperatures of the inlet and outlet fluid through the energy textile. The air and ground temperature was also continuously monitored. The operation of the energy textile as a ground heat exchanger was simulated using a 3D numerical CFD model (Fluent). The thermal conductivity of shotcrete and concrete lining components and temperature variation of air in the tunnel were incorporated in the model. The numerical analysis shows a good agreement with the long-term monitoring result.

  • PDF

Study on Fresh Air Load Reduction System by Using Geothermal Energy - Effect on Thermal Characteristic arid Air Pattern of System by Opening Configuration - (지열을 이용한 공조외기부하저감 시스템에 관한 연구 -지하피트 공간 내의 개구부 형상이 시스템의 열적 특성 및 기류성상에 미치는 영향-)

  • Son Won-Tug;Lee Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1092-1100
    • /
    • 2004
  • This paper presents the effect of opening configuration on the thermal behavior and air pattern of earth tube system. The earth tube system is a fresh air load reduction system by using underground double floor space for air-conditioning. In order to analyze the effect of opening configuration on thermal performance of this system and air pattern in underground double floor space quantitatively, we used a model dealing with tree-dimensional profile of wind velocity and temperature in underground double floor space. In conclusion, it is confirmed that heat exchange of a fresh air is mainly performed with upper and lower wall in underground double floor space, and that heat exchange area increased by installing the opening near the wall.

A Study on the Effects of Heat Pump Using Standing Column Well on Soil and Groundwater Microorganisms (스탠딩컬럼웰을 적용한 지열히트펌프의 토양 및 지하수 미생물에 대한 영향 연구)

  • Jun, Jungeui;Park, Sisam;Na, Sangmin;Rhee, Keonjoong;Park, Jaewoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.93-101
    • /
    • 2009
  • Standing column well (SCW) heat pump system produces geothermal energy by the heat exchange of the groundwater. If SCW system changed the temperature of soil and groundwater, it could also change species or population of microorganisms. Therefore it is needed to research about the effect of temperature change on microorganisms to use eco-friendly geothermal energy. We produced the simulative heat pump system (SHPS) and observed the change of the soil temperature in SHPS. Characteristic analysis of microorganisms isolated from soil was performed and groundwater temperature variation was evaluated. Also the bleeding effect in SHPS was investigated and the results are included. As the results, the population of microorganisms was increased about 90%, as the groundwater temperature increased 2-3 celsius degree. However the species of microorganism was little influenced by the temperature change of the soil.

  • PDF