• 제목/요약/키워드: Geothermal heat exchange system

검색결과 53건 처리시간 0.026초

EWT를 고려한 지중열교환기 파이프 선정에 관한 연구 (A Study on Selection of Pipe Materials Considering EWT)

  • 류형규;정민호;이병석;최현준;최항석
    • 한국지열·수열에너지학회논문집
    • /
    • 제10권2호
    • /
    • pp.13-18
    • /
    • 2014
  • This paper proposes an optimum pipe material (PVC vs. PE) design & selection for open loop ground heat exchangers. Heat exchange efficiency and/or workability, and the need for trench insulation were investigated by comparing EWT (cooling mode) of each system. CFD simulations for the PVC and PE pipe with the same inner diameter show similar EWT. This is because the PVC pipe has a small thickness but a low thermal conductivity as compared to the PE pipe, and thus these two properties tend to offset each other. However, a hypothetically insulated pipe led to a meaningful drop of EWT. This means pipe insulation is of importance in performance of ground heat exchangers. From analyzing climate data and system operation, it is not advantageous to insulate trench pipes due to construction difficulties and ground temperature characteristics that are seasonally varied.

지하수 부존지역에서 최적 지열에너지 활용방식 수치 모의 (Numerical Simulations for Optimal Utilization of Geothermal Energy under Groundwater-bearing Conditions)

  • 김진성;차장환;송성호;정교철
    • 지질공학
    • /
    • 제24권4호
    • /
    • pp.487-499
    • /
    • 2014
  • 최근 지열에너지 활용 증가 추세와 더불어 지하수 부존량이 풍부한 지역에서 수직개방형의 효율이 더 높다는 연구결과가 제시됨에도 불구하고, 국내 지열냉난방시스템의 열교환 방식은 수직밀폐형 방식이 주를 이루고 있다. 따라서, 본 연구에서는 지하수 부존량이 풍부한 지역에서 수직개방형 방식의 효율성을 검증하기 위하여, 수리지질 및 열적 특성을 반영한 최적의 지열에너지 활용 방식을 수치 모의하였다. 1차 모의 결과, 지하수 부존량이 풍부한 지역에서 지열냉난방시스템을 활용하는 경우 수직밀폐형보다 지하수를 직접 이용하는 수직개방형이 더욱 효과적인 것으로 분석되었으며, 수직개방형 중에서는 SCW (standing column well)형 보다는 주입정과 추출정이 분리된 복수관정형에서 지반과 열교환을 통해 얻을 수 있는 주입수와 추출수의 온도차 (${\Delta}$)가 커 더욱 효율적인 것으로 나타났다. 2차 모의에서는 수직개방형 지열에너지 공급방식인 단일관정형, SCW형, 복수관정형을 대상으로 열 이송, 이격거리 및 유량, 지하수 수리경사 등을 고려한 최적의 활용 방식을 검토하였으며, 이를 바탕으로 지열냉난방시스템의 지중 열교환 방식 선정 시 활용할 수 있는 흐름도를 제시하였다. 본 연구결과 제시된 다양한 선정 기준을 기초로 실제 선정 시에는 전체 지열냉난방 시스템에 대한 COP (coefficient of performance) 계산 및 세부적인 타당성 검토가 필요할 것으로 판단된다.

지열히트펌프 시스템의 국내 적용현황 조사 및 분석 (Investigation and Analysis on the present state of Geothermal Source Heat Pump System Applied in Korea)

  • 최미영;고명진;김용식;박진철;이언구
    • 설비공학논문집
    • /
    • 제21권5호
    • /
    • pp.267-272
    • /
    • 2009
  • This study aims to investigate and analyze the present state of ground source heat pump(GSHP) system applied in Korea. It is based on the statistic from the New and Renewable Energy Center in Korea and construction results of the professional companies registered to the center. The research items were installed area, installed year, building use, ground heat exchange type and heat exchanger type of the pump. According to the result of investigation, the using GSHP system have been increasing steadily as the space heating and cooling system in a building. The capacity of this system is also becoming lager based on technical and economical feasibility analysis about the system since GSHP system first introduced in 2000.

강관 토목구조물이 설치된 지열 히트펌프 시스템의 냉방 성능 평가 (Evaluation on Cooling Performance of Ground Source Heat Pump System Equipped with Steel-pipe Civil Structures)

  • 이석재;양정훈;최항석
    • 한국지열·수열에너지학회논문집
    • /
    • 제19권3호
    • /
    • pp.14-22
    • /
    • 2023
  • Steel-pipe civil structures, including steel-pipe energy piles and cast-in-place piles (CIPs), utilize steel pipes as their primary reinforcements. These steel pipes facilitate the circulation of a working fluid through their annular crosssection, enabling heat exchange with the surrounding ground formation. In this study, the cooling performance of a ground source heat pump (GSHP) system that incorporated steel-pipe civil structures was investigated to assess their applicability. First of all, the thermal performance test was conducted with steel-pipe CIPs to evaluate the average heat exchange amount. Subsequently, a GSHP system was designed and implemented within an office container, considering the various types of steel-pipe civil structures. During the performance evaluation tests, parameters such as the coefficient of performance (COP) and entering water temperature (EWT) were closely monitored. The outcomes indicated an average COP of 3.74 for the GSHP system and the EWT remained relatively stable throughout the tests. Consequently, the GSPH system demonstrated its capability to consistently provide a sufficient heat source, even during periods of high cooling thermal demand, by utilzing the steel-pipe civil structures.

이산화탄소 냉방운전 시 냉매충전량 및 운전조건에 따라 내부열교환기가 성능에 미치는 영향 (Effects on Performance of an Internal Heat Exchanger According to Charge Amount and Operating Condition in $CO_2$ Cooling Mode)

  • 곽명석;조홍현
    • 한국지열·수열에너지학회논문집
    • /
    • 제8권1호
    • /
    • pp.13-20
    • /
    • 2012
  • This is an experimental study on the performance characteristics of effective heat pump in the cooling mode using a single-stage compression $CO_2$ cycle with an IHX(internal heat exchanger). The performance of a single-stage compression with IHX was investigated according to charge amount and operating condition. Moreover, the performance characteristic of cooling operating was analyzed with the length of IHX. As a result, the optimum refrigerant charge amount was 2.2 kg. The optimal system COP for compressor frequency of 30, 40, 50, and 60 Hz was 3.493, 3.228, 2.978, and 2.659, respectively. Since the system with IHX can maintain large cooling capacity regardless of operating condition, the system performance doesn't reduce considerably under unfavorable condition. When the compressor frequency was 40 Hz, the COP for a system with IHX length of 3 m and 5 m was 3.361 and 3.51, respectively. By using the IHX into a $CO_2$ cooling system, the performance and reliability improves simultaneously.

토양과 공기유동특성이 토양-공기 열교환기 성능에 미치는 영향 (Effects of Soil and Air Flow Characteristics on the Soil-Air Heat Exchanger Performances)

  • 김영복;김기영
    • Journal of Biosystems Engineering
    • /
    • 제23권1호
    • /
    • pp.21-30
    • /
    • 1998
  • A theoretical model was developed to evaluate the effects of soil and airflow characteristics on the soil-air heat exchanger performances. The model, which includes three-dimensional transient energy and mass equilibrium-equation, was solved by using a computer program that uses Finite Difference Methods and Gauss-Seidel iteration computation. Energy gains, heat exchange efficiencies, and outlet air temperature are presented including the effects of soil moisture content, soil conductivity, soil thermal diffusivity, and soil initial temperature. Also, data related to the effects of airflow rate and inlet air temperature on the thermal performance of the system are presented. The results indicated that energy gains depend on soil conductivity, soil thermal diffusivity, and soil initial temperature. Heat exchange efficiencies relied on air mass flow rate and soil moisture content.

  • PDF

건물구조체를 이용한 수평형 지열시스템의 시공법에 관한 연구 (Study on construction method of horizontal ground heat pump system using the building structure)

  • 채호병;남유진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.139-140
    • /
    • 2013
  • Ground source heat pump systems can achieve the energy saving of building and reduce CO2 emission by utilizing stable ground temperature. However, they have many barriers such as high cost of installation, incompletion of design tool, lack of recognition as heating and cooling systems. In order to solve the problems, the building integrated geothermal system (BIGS) developed by several researches which use building foundation as a heat exchanger. In order to establish the optimum design tool of BIGS with the horizontal heat exchanger, the prediction method of ground heat exchange rate developed with numerical simulation model. In this study, the economic analysis for BIGS was conducted based on simulation results and the optimal design method was suggested. As a result, it was found that the case of 32 A, piping space 0.3 m, piping deep 0.5 m and flow rate 9.52 L/min was the best case as 50.1 W/m2 of heat exchange rate. In this case the initial cost was reduced to 115 million won.

  • PDF

지중매설관의 특성이 토양 - 공기 열교환기 성능에 미치는 영향 (Effects of Earth-Tube Characteristics on the Soil-Air Heat Exchanger Performances)

  • 김영복
    • Journal of Biosystems Engineering
    • /
    • 제22권4호
    • /
    • pp.459-468
    • /
    • 1997
  • To optimize the design and operation of a soil- air heat exchanger system, the effects of variables characterizing system design and operation on the performance of the system were analyzed by a theoretical model which included the three-dimensional transient heat conduction equation. The solution of the theoretical model was acquired by a computer program that uses Finite Difference Methods and Gauss-Seidel iteration computation, in which the time discretization scheme was an implicit difference appoximation. The computer program was validated first by comparison of the results for different grid sizes. Air outlet temperature, energy gain, and heat exchange efficiency of the system were analyzed based upon the tube diameter, tube length, tube thickness, and tube thermal diffusivity.

  • PDF