• Title/Summary/Keyword: Geothermal Heat Pump System

Search Result 287, Processing Time 0.02 seconds

Performance Prediction of Geothermal Heat Pump System by Line-Source and Modified DST(TRNVDSTP) Models (선형열원 모델과 수정 DST(TRNVDSTP) 모델에 의한 지열 히트펌프 시스템 성능 예측)

  • Sohn, Byong-Hu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.2
    • /
    • pp.61-69
    • /
    • 2012
  • Geothermal heat pump(GHP) systems have been shown to be an environmentally-friendly, efficient alternative to traditional cooling and heating systems in both residential and commercial applications. Although some experimental work related to performance evaluation of GHP systems with vertical borehole ground heat exchangers for commercial buildings has been done, relatively little has been reported on the performance simulation of these systems. The aim of this study is to evaluate the cooling and heating performance of the GHP system with 30 borehole ground heat exchangers applied to an commercial building($1,210m^2$) in Seoul. For this purpose, a typical design procedure was involved with a combination of design parameters such as building loads, heat pump capacity, circulating pump, borehole diameter, and ground effective thermal properties, etc. The cooling and heating performance prediction of the system was conducted with different prediction methods and then each result is compared.

Development of a Compression/Absorption Hybrid Heat Pump System Using $NH_3/H_2O$ Mixture for High Temperature Generation ($NH_3/H_2O$를 이용한 압축-흡수식 고온제조 하이브리드 히트펌프 시스템 개발)

  • Kim, Min-Sung;Baik, Young-Jin;Shin, Kwang-Ho;Park, Seong-Ryong;Chang, Ki-Chang;Lee, Young-Soo;Ra, Ho-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1249-1254
    • /
    • 2008
  • Industrial low temperature waste heat exists sparse in surroundings but its amount is huge. However, large portion of waste heat is discarded due to its poor recovery quality and inferior application technologies. The heat pump system in this research is based on the hybrid combination of compression cycle and absorption cycle in order to recycle various kind of industrial waste heat effectively. The prime objective is to design a compression absorption hybrid heat pump system which can produce high temperature above the level of $90^{\circ}C$ and low temperature of $20^{\circ}C$ at the same time using waste heat water of $50^{\circ}C$. A mathematical simulation was carried out as a basis to design a prototype 3 RT class hybrid heat pump. From the simulation results, fundamental parameters to design the system were obtained.

  • PDF

A Study on The Operation Characteristics of 2-Stage Compression Heat Pump using Treated sewage (하수처리수를 이용한 2단 압축 열펌프 시스템의 운전특성에 관한 연구)

  • Kim, Ji-Young;Baik, Young-Jin;Lee, Young-Soo;Chang, Ki-Chang;Ra, Ho-sang
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.299-303
    • /
    • 2008
  • The treated sewage temperature is about $5^{\circ}C$ lower in summer and $5{\sim}10^{\circ}C$ higher in winter than ambient air. It can be used heat pump heat source and is good heat source on high performance of heat pump. In this study, to develop 100RT 2-stage compression heat pump use treated sewage water heat source and system applies to sewage disposal plant. Although heat pump is better performance, the large temperature difference between load and source makes the performance degradation of a heat pump. To solve this problem screw 2-stage compression is considered. The experiment was focused on the system operating performance variations over supply water and treated sewage water a temperature in the field. The results show that system of heating performance is higher then general heat pump and is enough to supply a hot water of $70^{\circ}C$.

  • PDF

Research on the heating performance of SCW heat pump system for residential house (주거용 건물의 지하수 이용 지열 히트펌프 시스템의 난방성능 특성에 관한 연구)

  • Kim, Ju-Hwa;Kim, Ju-Young;Hong, Won-Hwa;Ahn, Chang-Hwan
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2008.04a
    • /
    • pp.431-435
    • /
    • 2008
  • Geothermal heat pump system using standing column wells as their ground heat exchanger can be used as a highly efficient source of heating and cooling in massive buildings. But there is no case of a small scale residential house. So this study estimated heating coefficient of performance(COP) of geothermal heat pump system using standing column well type which is excellent in heat recovery in the residential house. As a result of analysis, The COP of heat pump is over average 6 and is excellent. And in consequence of making a comparative study according to the bleeding, the cop is higher in the case of bleeding. Therefore, bleeding affects the performance of the system. This study has shown performance result that stands on actual data. Therefore, this study provides ground data that needs when a low capacity of system designs for a residence with confidence elevation.

  • PDF

An Experimental Study on the Load Delivery Characteristics of Hybrid Energy System with Geothermal and Solar Heat Sources (지열-태양열원 복합시스템의 부하추종특성에 관한 실험 연구)

  • Hwang, In-Ju;Woo, Nam-Sub
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.2 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • The objective of the present study is to investigate the load delivery characteristics of a hybrid-renewable energy system with geothermal and solar heat sources for hot water, heating and cooling of a residential house in Korea. The hybrid energy system consists of ground source heat pump of 2 RT for cooling with a 150 m vertical U-bend ground heat exchanger, solar collectors of 4.8 m2 and gas fired backup boiler. The averaged coefficient of performance of geothermal module during cooling and heating seasons are evaluated as about 4.5 and 3.8, respectively.

  • PDF

Economic Analysis of Various Residential Geothermal Heat Pump System Capacities (주택용 지열히트펌프 시스템의 용량 변화에 대한 경제성 비교 분석)

  • Lee, Chung-Kook;Suh, Seung-Jik;Kim, Jin-Sang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.2
    • /
    • pp.1-9
    • /
    • 2011
  • Geothermal heat pumps are known as the most efficient and environment-friendly heating and cooling system, and are also gaining acceptance in buildings. Building energy simulation program, EnergyPlus is used to calculate the energy consumption of residential buildings. This simulated energy consumption is essential for accurate economic analysis. Residential buildings with geothermal heat pumps have complex energy price structure. Electricity rates for residential buildings increase rapidly as the monthly use increases. This complex energy price structure makes the economic analysis complicated. The purpose of this study is to conduct economic comparison of residential geothermal heat pumps and provide a feasible approach in finding their economically feasible capacity.

Fiber optic distribution temperature sensing in a borehole heat exchanger system (광섬유 센서를 이용한 지중 열교환기 시스템 온도 모니터링)

  • Shim, Byoung-Ohan;Lee, Young-Min;Kim, Hyoung-Chan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.451-454
    • /
    • 2006
  • Fiber optic distributed temperature sensing and thermal line sensor are applied in an observation borehole and a loom deep borehole heat exchanger. For the case of permanently installed system fiber optic DTS is very useful. By comparing with TLS, fiber optic DTS shows good accuracy and reliability. Ground water flow can give influences at heat exchange rate of the heat pump system. According to the hydraulic characteristics and temperature-depth profile, we consider that temperature-depth profile do not seem to be dependent on ground water flow. A permanent installation of fiber optic cable is expected as a reliable temperature measurement technique in a borehole heat exchanger system.

  • PDF

Heating Performance of Heat Pump System Using Dual Heat Source and Its Operation Characteristics (이중 열원 히트펌프 시스템의 난방 성능과 운전 특성)

  • Lim, Hyojae;Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.2
    • /
    • pp.30-41
    • /
    • 2021
  • This paper presents the heating performance analysis results of a heat pump system using a dual heat source. In this paper, a dual heat source refers to the ground-coupled heat exchanger using both a surface water heat exchanger (SWHE) and a vertical ground heat exchanger (VGHE). In order to evaluate the system performance, we installed a monitoring system to measure the temperature and power consumption of a heat pump and then collected operation data with 4 different load burdened ratios of the dual heat source heat exchanger. During the whole measurement period, the average heating capacity of a water-to-water heat pump unit was 37.3 kW. In addition, the compressor of the heat pump consumed 9.4 kW of power, while the circulating pump of the dual heat source heat exchanger used 6.7 kW of power. Therefore the average heating coefficient of performance (COP) for the heat pump unit was 4.0, while the entire system including the circulating pump was 2.7. Finally, the parallel use of SWHE and VGHE was beneficial to the system performance; however, further researches are needed to optimize the design data for various load ratios of the dual heat source heat exchanger.

A Study to Calculate Inlet Fluid Temperature of the Borehole Heat Exchanger (BHE) using Modified TOUGHREACT (Modified TOUGHREACT를 이용한 지중 열교환기 내 순환 유체의 온도 분포 추정)

  • Kim, Seong-Kyun;Bae, Gwang-Ok;Lee, Kang-Kun;Shim, Byoung-Ohan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.477-480
    • /
    • 2007
  • Inlet fluid temperature of the BRE in the geothermal heat pump system depends on heat exchange rate between the refrigerant of the heat pump and the leaving fluid from the BRE. Because the outlet fluid temperature of the BHE varies with time, inlet fluid temperature has to vary with time. In this study, the module to calculate inlet fluid temperature is developed, which can consider the time-varying outlet fluid temperature and the heat exchange capacity of the heat pump. It is assumed that heat loss or gain of the leaving fluid from outlet to inlet of the BHE is negligible, except when the fluid contacts with the refrigerant of the heat pump. This module is combined with TOUGHREACT, a widely accepted three-dimensional numerical simulator for heat and water flow and geochemical reactions in geothermal systems and is applied to data analyses of the thermal response test.

  • PDF

A Study on the Monitoring Methods for Energy Production in Ground Source Heat Pump System (지열원 열펌프 시스템의 에너지 생산량 모니터링 신뢰도 향상 방안 연구)

  • Kang, Shin-Hyung;Lee, Kwang Ho;Do, Sung Lok;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.2
    • /
    • pp.10-16
    • /
    • 2019
  • In this study, the present regulation of heat metering for the ground source heat pump was investigated. The ground source heat pump has been adopting the heat metering system used in the district heating system for estimating the heating and cooling energy production amount. The accuracy of the present heat metering systems for a water to water ground source heat pump is low, because the system for district heating has a relatively high temperature range comparing with the ground source heat pump operating conditions. Even though the heat amount for the building side should be measured, the heat absorption and extraction amount from or to the ground was measured for the water to air ground source heat pump due to the difficulty of estimating the air side heating and cooling capacity in the present regulation. It is highly recommended to validate the heat metering system to have reliability for the ground source heat pump and develop the system to be applicable water to air ground source heat pump.