• Title/Summary/Keyword: Geotechnical Information System

Search Result 188, Processing Time 0.026 seconds

Shallow landslide susceptibility mapping using TRIGRS

  • Viet, Tran The;Lee, Giha;An, Hyun Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.214-214
    • /
    • 2015
  • Rainfall induced landslides is one of the most devastating natural disasters acting on mountainous areas. In Korea, landslide damage areas increase significantly from 1990s to 2000s due to the increase of both rainfall intensity and rainy days in addition with haphazard land development. This study was carried out based on the application of TRIGRS unsaturated (Transient Rainfall Infiltration and Grid-based Regional Slope stability analysis), a Fortran coded, physically based, and numerical model that can predict landslides for areas where are prone to shallow precipitation. Using TRIGRS combining with the geographic information system (GIS) framework, the landslide incident happened on 27th, July 2011 in Mt. Umyeon in Seoul was modeled. The predicted results which were raster maps showed values of the factors of safety on every pixel at different time steps show a strong agreement with to the observed actual landslide scars in both time and locations. Although some limitations of the program are still needed to be further improved, some soil data as well as landslide information are lack; TRIGRS is proved to be a powerful tool for shallow landslide susceptibility zonation especially in great areas where the input geotechnical and hydraulic data for simulation is not fully available.

  • PDF

Major causes of failure and recent measurements of tunnel construction (터널시공 중 붕락발생 원인과 최신 보강기술)

  • Park, Bong-Ki;Hwang, Je-Don;Park, Chi-Myeon;Kim, Sang-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.140-153
    • /
    • 2005
  • During the tunnel construction the major failure mode can be categorized as: tunnel failure just after the tunnel excavation without support, failure after application of shotcrete and finally failure after setting the concrete lining. The failure mode just after the tunnel excavation without support, can be further classified as : bench failure, crown failure, face failure, full face failure, failure due to weak strata and failure due to overburden. Moreover the failure after application of shotcrete is classified as heading face failure, settlement of shotcrete support, local failure of shotcrete lining and invert shotcrete. To find out the major causes of tunnel collapse, the investigation was done in case of the second phase of Seoul subway construction. The investigation results depicted that the major causes of tunnel collapse were due to the weak layer of rock/fault and sudden influx of ground water from the tunnel crown. While the investigation results of the mountain road tunnels construction have shown that the major causes of tunnel failure were inadequate analysis of tunnel face mapping results, intersection of faults and limestone cavities. In this paper some recent measurement in order to mitigate such tunnel collapse are presented

  • PDF

A Development on the Non-Destructive Testing Equipment for the Compaction Control and the Evaluation of Pavements Properties (지반물성추정 및 다짐관리를 위한 비파괴시험장비의 개발)

  • 최준성;김인수;유지형;김수일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.385-390
    • /
    • 2000
  • In this study, the Non-Destructive Testing Equipment was introduced for the compaction control and the evaluation of pavements properties and the developing process was showed. Falling Weight Deflectometer(FWD) is a system for performing non-destructive testing of pavement and the other foundation structures. The system develops forces from the acceleration caused by the arrest of a falling weight and these forces are transmitted onto the surface of a structure causing it to deflect much as it would due to the weight of a passing wheel load. The structure will bend downward and exhibit a deflection basin. FWD uses a set of velocity sensors to determine the amplitude and shape of the deflection basin. The deflection response, when related to the applied loading, can provide information about the strength and condition of the various elements of the test structure. In this study, a computer program was developed that can be used to evaluate pavement and foundation structures from the data produced by FWD. The Falling Weight Deflectometer, non-destructive testing equipment, is increasing used at the whole world.

  • PDF

Development of automatic alert populating system of earth structures based on sensor monitoring (센서 모니터링을 활용한 토류구조물 상황전파 자동화 시스템 개발)

  • Kim, Yong-Su;Ahan, Sang-Ro;Jung, Jae-Hyun;Han, Sang-Jea;Jung, Seung-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.667-672
    • /
    • 2009
  • Gathering information and systemization of infrastructure disaster management is to reduce uncertainties in making decisions and maximize the number of alternations. The key objects of a sensor-based progress report and propagation automation systems are to provide objective data, realize and support decision making and deliver them to a certain area, department, manager and other people rapidly. The major findings and results of this study are as follows. 1) Application of international standard-based alerting protocol(CAP; Common Alerting Protocol). 2) Development of database of existing progress report and propagation manual in order to achieve networking of safety management on major social infrastructure of the nation. 3) Development middleware application programs to progress report and propagation data using SMS, FAX, EMS, VMS, MMS.

  • PDF

Development of Mobile Equipment for Local Risk Factors Detecting of Road Slope (도로사면의 국부적 위험요인 검지를 위한 이동형 장비 개발)

  • Kim, Yong-Soo;Jung, Soo-Jung;Ahn, Sang-Ro
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.938-945
    • /
    • 2008
  • Rockfall and landslide bring about a great social loss with loss of property such as obstruction of traffic and damage of the crops as well as casualty. The purpose of this study is to develop a mobile equipment for local risk factors detecting of road slope. The mobile equipment is designed to receive the sensing data from the measurement sensors, which are installed to detect the dangerous signs from the slopes, as loaded on a vehicle which is moving around to the places where the sensors are installed. In general, more than one mandatory data logger, which is very expensive, must be installed at each slope for the automatic measuring system, but in case of this developmental system, the inexpensive routine measurement can be performed regardless of the number of slopes due to the single unit of information gathering vehicle. This study is going to develop technologies that are expected to be applied to not only slope but also tunnel and bridges which might have the partial risk and need measuring.

  • PDF

Grout Injection Control using AI Methodology (인공지능기법을 활용한 그라우트의 주입제어)

  • Lee Chung-In;Jeong Yun-Young
    • Tunnel and Underground Space
    • /
    • v.14 no.6 s.53
    • /
    • pp.399-410
    • /
    • 2004
  • The utilization of AS(Artificial Intelligence) and Database could be considered as an useful access for the application of underground information from the point of a geotechnical methodology. Its detailed usage has been recently studied in many fields of geo-sciences. In this paper, the target of usage is on controlling the injection of grout which more scientific access is needed in the grouting that has been used a major method in many engineering application. As the proposals for this problem it is suggested the methodology consisting of a fuzzy-neural hybrid system and a database. The database was firstly constructed for parameters dynamically varied according to the conditions of rock mass during the injection of grout. And then the conceptional model for the fuzzy-neural hybrid system was investigated fer optimally finding the controlling range of the grout valve. The investigated model applied to four cases, and it is found that the controlling range of the grout valve was reasonably deduced corresponding to the mechanical phenomena occurred by the injection of grout. Consequently, the algorithm organizing the fuzzy-neural hybrid system and the database as a system can be considered as a tool for controlling the injection condition of grout.

Slope stabilization with high-performance steel wire meshes in combination with nails and anchors

  • Rudolf Ruegger;Daniel Flum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11b
    • /
    • pp.3-38
    • /
    • 2000
  • Slope draperies in soil and rock are a well known method to avoid rockfalls into the roads or onto housings. Common wire mesh or a combination of wire mesh and wire rope nets are pinned to the slope by the means of fully grouted nails or anchors. Most of these installations have not been designed to stabilize the slope, but simply avoid the rocks from bouncing. The combination of soil- or rocknailing with a designable flexible facing system offers the advantage of a longterm stabilization of slopes and can replace other standard methods for slope stabilization. The capability to transfer axial and shear loads from the flexible facing system to the anchor points is most decisive for the design of the stabilization system. But the transfer of forces by mesh as pure surface protection devices is limited on account of their tensile strength and above all also by the possible force transmission to the anchoring points. Strong wire rope nets increase the performance for slope stabilizations with greater distances between nails and anchors and are widely used in Europe. However, they are comparatively expensive in relation to the protected surface. Today, special processes enable the production of diagonally structured mesh from high-tensile steel wire. These mesh provide tensile strengths comparable to wire rope nets. The interaction of mesh and fastening to nail / anchor has been investigated in comprehensive laboratory tests. This also in an effort to find a suitable fastening plates which allows an optimal utilization of the strength of the mesh in tangential (slope-parallel) as well as in vertical direction (perpendicular to the slope). The trials also confirmed that these new mesh, in combination with suitable plates, enable substantial pretensioning of the system. Such pretensioning increases the efficiency of the protection system. This restricts deformations in the surface section of critical slopes which might otherwise cause slides and movements as a result of dilatation. Suitable dimensioning models permit to correctly dimension such systems. The new mesh with the adapted fastening elements have already been installed in first pilot projects in Switzerland and Germany and provide useful information on handling and effects.

  • PDF

Effect of Hydrophobic Condition and Water Content on the Spectral Information of Soil Particle Surface (흙 입자 표면의 소수성 조건과 함수비가 분광정보에 미치는 영향)

  • Jeong-Jun, Park;Seung-Kyong, You;Kwang-Wu, Lee;Jung-Mann, Yun;Gigwon, Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.93-100
    • /
    • 2022
  • This study describes the evaluation results on the effect of soil particle surfaces coated with various hydrophobic conditions on spectral information according to water content. Wettability test and spectral information evaluation test were performed on the hydrophobic coated standard sand. When the standard sand was coated with 1%, 3%, and 5% hydrophobic, the contact angles of sand-water interface were 130°~143°, 129°~144°, and 131°~144°, respectively. This means that the contact angle increased as the degree of hydrophobic coating increased at the same drying time, but the range of the contact angle had the same wettability. This means that the contact angle increases as the hydrophobic coating degree increases at the same drying time, whereas the contact angle range has the same wettability. As a result of spectral information evaluation, the maximum spectral reflectance of the dried sand with hydrophobic condition decreased compared to that of the hydrophilic sand, as the degree of hydrophobic increased. However, the maximum spectral reflectance was increased by increasing the degree of hydrophobic under the same water content conditions.

A study on the landslide detection method using wireless sensor network (WSN) and the establishment of threshold for issuing alarm (무선센서 네트워크를 이용한 산사태 감지방법 및 경로발령 관리 기준치 설정 연구)

  • Kim, Hyung-Woo;Kim, Goo-Soo;Chang, Sung-Bong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.262-267
    • /
    • 2008
  • Recently, landslides frequently occur on natural slope and/or man-made cut slope during periods of intense rainfall. With a rapidly increasing population on or near steep terrain, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide monitoring systems have been developed throughout the world. In this paper, a simple landslide detection system that enables people to escape the endangered area is introduced. The system is focused on the debris flows which happen frequently during periods of intense rainfall. The system is based on the wireless sensor network (WSN) that is composed of wireless sensor nodes, gateway, and remote server system. Wireless sensor nodes and gateway are deployed by commercially available Microstrain G-Link products. Five wireless sensor nodes and one gateway are installed at the test slope for detecting ground movement. The acceleration and inclination data of test slope can be obtained, which provides a potential to detect landslide. In addition, thresholds to determine whether the test slope is stable or not are suggested by a series of numerical simulations, using geotechnical analysis software package. It is obtained that the alarm should be issued if the x-direction displacement of sensor node is greater than 20mili-meters and the inclination of sensor node is greater than 3 degrees. It is expected that the landslide detection method using wireless senor network can provide early warning where landslides are prone to occur.

  • PDF

Slope Management Program of Available to an Urban Area (대도시지역에 적합한 사면관리프로그램)

  • Kim, Kyeong-Su;Cho, Yong-Chan;Chae, Byung-Gon;Song, Young-Suk;Lee, Choon-Oh
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.644-651
    • /
    • 2006
  • In general, a damage that occurs due to landslide or slope failure in urban areas is larger than that in rural areas. In order to reduce the damage, a program is necessary to categorize slopes based on properties and to manage them systematically. Based on the above necessity, a slope management program which is applicable to slope management in an urban area has been developed at Hwangryung mountain in Busan as a target area. The program has a function of systematic slope information constructed by slope ID number of each slope or sub-region of a mountain, making a slope data sheet, analysis and grouping of slope stability, and establishment of a data base. It can also be utilized practically by end users due to the convenient input, edition, printing, management and operation of slope data. For practical utilization of the developed program, a research related to construction of the slope management system for a regional area is demanded to be performed continuously. The supply and utilization of a web based slope management system would contribute to damage reduction.

  • PDF