• Title/Summary/Keyword: Geotechnical Information

Search Result 497, Processing Time 0.033 seconds

Geotechnical Characterization of the Eardo Seabed for Offshore Pile Foundation Design (해양말뚝 기초설계를 위한 이어도 해저지반의 특성화)

  • Shim, Jae-Seol;Yoon, Gil-Lim;Kown, O-Soon
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.141-155
    • /
    • 1999
  • Korea Ocean Research & Development Institute(KORDI) conducted an offshore geotechnical investigation for the Eardo Ocean Research Station with the help of the Fugro International Limited at a site location approximately 152 km away from Mara Island, Korea. The primary purpose of the geotechnical investigation was to obtain information on soil and foundation conditions, and to develop foundation design data for a fixed offshore observation platform. This paper discussed the details of the geotechnical investigation and the foundation design recommendations for the Ocean Research Station. Clear recommendations were proposed for the foundation type of driven pile considering the existing soil conditions.

  • PDF

Evaluation of the Vulnerability of Bridge Foundations to Scour (세굴로 인한 교량기초의 위험도 평가)

  • Kwak, Ki-Seok;Park, Jae-Hyun;Lee, Ju-Hyung;Chung, Moon-Kyung;Kim, Jong-Cheon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.713-718
    • /
    • 2005
  • A methodology is developed to evaluate the vulnerability of bridge piers to scour and to help establish effective disaster measures, taking into account the locality and scour characteristics in Korea. Based on the bearing capacity of bridge foundation-ground integrating system changed by scour, this methodology is able to prioritize bridge foundations reflecting on the geotechnical factors as well as hydraulic ones. The bridge foundation vulnerability to scour is categorized into 7 groups considering the concise information of the bridge foundation-ground integrating system. A case study of implementing this method which includes the analysis of the scour depth and evaluation, and categorizing the scour vulnerability of bridge foundation is presented.

  • PDF

Development and Installation of Large-scale Geotechnical Testing Facilities (대형 지반시험장비의 개발 및 구축)

  • Seo, Min-Woo;Ha, Ik-Soo;Kim, Yong-Seong;Park, Dong-Soon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1233-1240
    • /
    • 2005
  • As the geotechnical technologies have grown, the size of civil structures has become bigger than before, thereby requiring large-scale geotechnical testing equipments which can evaluate the mechanical behavior of large size testing materials such as gravel, crushed rock and so on. These kind of large testing equipments are usually used to evaluate the mechanical characteristics of large size material which are applied in the large infra structures like dam, seashore structure, coastal landfill, soil-structure interaction and seismic response of large-scale structure. In this research, state-of-the-art information in the field of geotechnical engineering was collected and summarized for such large-scale experimental equipments as large-scale geo-centrifuge, large-scale triaxial testing machine, large-scale direct shear testing apparatus and large-scale oedometer.

  • PDF

GEOPHYSICAL CHARACTERIZATION OF MARINE CLAYS - FROM GEOTECHNICAL PARAMETER ESTIMATION TO PROCESS MONITORING -

  • Choi, Gye-Chun;Chang, Il-Han;Oh, Tae-Min;Kim, Hak-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.37-46
    • /
    • 2010
  • Marine clays are soft soil deposits having complicated mineralogy and formation characteristics. Thus, characterization of its geotechnical behavior has been a main issue for geotechnical engineers. Nowadays, the importance and applications of geophysical exploration on marine clays are increasing significantly according to the accuracy, efficiency, and reliability of geophysical survey technology. For marine clays, seismic survey is effective for density and elasticity characterization, while electro-magnetic wave provides the information about the fluid conductivity phenomena inside soil. For practical applications, elastic wave technology can evaluate the consolidation state of natural marine clay layers and estimate important geotechnical engineering parameters of artificially reclaimed marine deposits. Electrical resistivity can provide geophysical characteristics such as particle cementation, pore geometry shape, and pore material phase condition. Furthermore, nondestructive geophysical monitoring is applicable for risk management and efficiency enhancement during natural methane gas extraction from gas hydrate-bearing sediments.

  • PDF

Introduction of Geo-Mechatronics in Construction IT (정보화 시공분야에서의 Geo-mechatronics 기술의 전망)

  • Kim, Young-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1289-1293
    • /
    • 2009
  • For the purpose of automatic management and enhancing quality of construction, information technology has been employed in construction field recently. As a consequence, informative construction, which utilizes information technology to reduce construction time and optimize construction sequence, becomes a state-of-art field of construction. Considering this case, construction field should more actively adopt other engineering technologies of rapidly advancing fields, such as electronic, control, and informative engineering, in order to reduce construction cost and to solve environmental problems as well as to enhance construction quality. In this aspect, this paper introduces a novel research field 'Geo-mechatronics', which stands for the convergence of geotechnical engineering and mechatronics (i.e. automation of mechanics using electronic technologies). Since the ground is ubiquitous in every infrastructure construction, the Geo-mechatronics research is crucial for the development of construction technology in the future. Moreover, it is believed to that the Geo-mechatronics research will make our construction industry to be more future-oriented and internationally comparative industry.

  • PDF

Design of Web GIS for Geotechnical Data (지반데이터의 활용을 위한 Web GIS 설계)

  • Yu, Shik;Park, Hyeong-Dong
    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.284-290
    • /
    • 2002
  • Over the past few decades, a considerable number of studies have been conducted on GIS(Geographic Information System) to process spatial date. As GIS comes to be used in many fields and used by many people, Web GIS which is a GIS system used on the internet, was proposed as a good tool to maintain the need. There is an increasing demand for Web GIS to provide more opportunity for users to manage and to analyze geotechnical data. This study mainly focused on the design and application of Web GIS particularly with geotechnical data, including design of efficient database structure for borehole data. A practical application of the Web GIS to tunnelling site has been successfully completed by the design of several analytical functions.

Spatial interpolation of SPT data and prediction of consolidation of clay by ANN method

  • Kim, Hyeong-Joo;Dinoy, Peter Rey T.;Choi, Hee-Seong;Lee, Kyoung-Bum;Mission, Jose Leo C.
    • Coupled systems mechanics
    • /
    • v.8 no.6
    • /
    • pp.523-535
    • /
    • 2019
  • Artificial Intelligence (AI) is anticipated to be the future of technology. Hence, AI has been applied in various fields over the years and its applications are expected to grow in number with the passage of time. There has been a growing need for accurate, direct, and quick prediction of geotechnical and foundation engineering models especially since the success of each project relies on numerous amounts of data. In this study, two applications of AI in the field of geotechnical and foundation engineering are presented - spatial interpolation of standard penetration test (SPT) data and prediction of consolidation of clay. SPT and soil profile data may be predicted and estimated at any location and depth at a site that has no available borehole test data using artificial intelligence techniques such as artificial neural networks (ANN) based on available geospatial information from nearby boreholes. ANN can also be used to accelerate the calculation of various theoretical methods such as the one-dimensional consolidation theory of clay with high efficiency by using lesser computation resources. The results of the study showed that ANN can be a valuable, powerful, and practical tool in providing various information that is needed in geotechnical and foundation design.

Three-dimensional geostatistical modeling of subsurface stratification and SPT-N Value at dam site in South Korea

  • Mingi Kim;Choong-Ki Chung;Joung-Woo Han;Han-Saem Kim
    • Geomechanics and Engineering
    • /
    • v.34 no.1
    • /
    • pp.29-41
    • /
    • 2023
  • The 3D geospatial modeling of geotechnical information can aid in understanding the geotechnical characteristic values of the continuous subsurface at construction sites. In this study, a geostatistical optimization model for the three-dimensional (3D) mapping of subsurface stratification and the SPT-N value based on a trial-and-error rule was developed and applied to a dam emergency spillway site in South Korea. Geospatial database development for a geotechnical investigation, reconstitution of the target grid volume, and detection of outliers in the borehole dataset were implemented prior to the 3D modeling. For the site-specific subsurface stratification of the engineering geo-layer, we developed an integration method for the borehole and geophysical survey datasets based on the geostatistical optimization procedure of ordinary kriging and sequential Gaussian simulation (SGS) by comparing their cross-validation-based prediction residuals. We also developed an optimization technique based on SGS for estimating the 3D geometry of the SPT-N value. This method involves quantitatively testing the reliability of SGS and selecting the realizations with a high estimation accuracy. Boring tests were performed for validation, and the proposed method yielded more accurate prediction results and reproduced the spatial distribution of geotechnical information more effectively than the conventional geostatistical approach.

An Adaptive and Real-Time System for the Analysis and Design of Underground Constructions

  • Gutierrez, Marte
    • Geotechnical Engineering
    • /
    • v.26 no.9
    • /
    • pp.33-47
    • /
    • 2010
  • Underground constructions continue to provide challenges to Geotechnical Engineers yet they pose the best opportunities for development and deployment of advance technologies for analysis, design and construction. The reason for this is that, by virtue of the nature of underground constructions, more data and information on ground characteristics and response become available as the construction progresses. However, due to several barriers, these data and information are rarely, if ever, utilized to modify and improve project design and construction during the construction stage. To enable the use of evolving realtime data and information, and adaptively modify and improve design and construction, the paper presents an analysis and design system, called AMADEUS, for underground projects. AMADEUS stands for Adaptive, real-time and geologic Mapping, Analysis and Design of Underground Space. AMADEUS relies on recent advances in IT (Information Technology), particularly in digital imaging, data management, visualization and computation to significantly improve analysis, design and construction of underground projects. Using IT and remote sensors, real-time data on geology and excavation response are gathered during the construction using non-intrusive techniques which do not require expensive and time-consuming monitoring. The real-time data are then used to update geological and geomechanical models of the excavation, and to determine the optimal, construction sequences and stages, and structural support. Virtual environment (VE) systems are employed to allow virtual walk-throughs inside an excavation, observe geologic conditions, perform virtual construction operations, and investigate stability of the excavation via computer simulation to steer the next stages of construction.

  • PDF

Spatial interpolation of geotechnical data: A case study for Multan City, Pakistan

  • Aziz, Mubashir;Khan, Tanveer A.;Ahmed, Tauqir
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.475-488
    • /
    • 2017
  • Geotechnical data contributes substantially to the cost of engineering projects due to increasing cost of site investigations. Existing information in the form of soil maps can save considerable time and expenses while deciding the scope and extent of site exploration for a proposed project site. This paper presents spatial interpolation of data obtained from soil investigation reports of different construction sites and development of soil maps for geotechnical characterization of Multan area using ArcGIS. The subsurface conditions of the study area have been examined in terms of soil type and standard penetration resistance. The Inverse Distance Weighting method in the Spatial Analyst extension of ArcMap10 has been employed to develop zonation maps at different depths of the study area. Each depth level has been interpolated as a surface to create zonation maps for soil type and standard penetration resistance. Correlations have been presented based on linear regression of standard penetration resistance values with depth for quick estimation of strength and stiffness of soil during preliminary planning and design stage of a proposed project in the study area. Such information helps engineers to use data derived from nearby sites or sites of similar subsoils subjected to similar geological process to build a preliminary ground model for a new site. Moreover, reliable information on geometry and engineering properties of underground layers would make projects safer and economical.