• Title/Summary/Keyword: Geostrophic balance

Search Result 10, Processing Time 0.018 seconds

Comparison between Geostrophic Currents and Measured in the Southwestern Part of the East Sea

  • Shin, Chang-Woong;Byun, Sang-Kyung;Kim, Cheol-Soo
    • Journal of the korean society of oceanography
    • /
    • v.31 no.2
    • /
    • pp.89-96
    • /
    • 1996
  • A comparative study between geostrophic currents and directly measured currents was conducted for the upper layer to 200 m depth by using data from eleven observations of CTD and ADCP between March 1992 and November 1993 in the southwestern part of the East Sea. First-order linear relationship was found between calculated geostrophic currents and measured currents with the correlation coefficient of 0.83. On the average, 68.7% of directly measured current can be explained by geostrophic current obtained by dynamic method. The correlation coeflicients increased with total geostrophic transport, which suggests that geostrophic balance is good in areas of strong current.

  • PDF

Verification of the Wind-driven Transport in the North Pacific Subtropical Gyre using Gridded Wind-Stress Products Constructed by Scatterometer Data

  • Aoki, Kunihiro;Kutsuwada, Kunio
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.418-421
    • /
    • 2007
  • Using gridded wind-stress products constructed by satellite scatterometers (ERS-1, 2 and QSCAT) data and those by numerical weather prediction(NWP) model(NCEP-reanalysis), we estimate wind-driven transports of the North Pacific subtropical gyre, and compare them in the central portion of the gyre (around 300 N) with geostrophic transports calculated from historical hydrographic data (World Ocean Database 2005). Even if there are some discrepancies between the wind-driven transports by the QSCAT and NCEP products, they are both in good agreement with the geostrophic transports within reasonable errors, except for the regional difference in the eastern part of the zone. The difference in the eastern part is characterized by an anticyclonic deviation of the geostrophic transport resulting from an anti-cyclonic anomalous flow in the surface layer, suggesting that it is related to the Eastern Gyral produced by the thermohaline process associated with the formation of the Eastern Subtropical Mode Water. We also examine the consistency of the Sverdrup transports estimated from these products by comparing them with the transports of the western boundary current, namely the Kuroshio regions, in previous studies. The net southward transport, based on the sum of the Sverdrup transports by QSCAT and NCEP products and the thermohaline transport, agrees well with the net northward transport of the western boundary current, namely the Kuroshio transport. From these results, it is concluded that the Sverdrup balance can hold in the North Pacific subtropical gyre.

  • PDF

The Characteristics of Structure of Warm Eddy Observed to the Northwest of Ullungdo in 1992 (1992년 울릉도 북서부해역에서 관측된 난수성 소용돌이의 구조특성)

  • 신홍렬;변상경
    • 한국해양학회지
    • /
    • v.30 no.1
    • /
    • pp.39-56
    • /
    • 1995
  • A warm eddy was continuously observed to the east of Sokcho, Korea from March to June 1992. This warm eddy had been formed in 1991, wintered to the east of Sokcho, and moved northward a little during April-June 1992. The diameter and the depth of the eddy were respectively about 160 km and about 330 m in March. The homogeneous (mixed) layer of 10$^{\circ}C$ and 34.2 psu water was found at the upper layer with the maximum size of about 130 km and maximum depth of about 230 m in March. The size of the eddy and homogeneous layer decreased in June. Maximum current velocity of the eddy was about 65 cm/s at the surface layer and exceeded20 cm/s at 200 m depth. It is shown that the flow field was nearly in geostrophic balance, but there was a little difference in the current velocity between ADCP and geostrophic calculation in June. The surface velocity of the East Korean Warm Current(EKWC) was 50∼70cm/s which was very similar to the northward current velocity of the eddy. The EKWC water appeared in the layer upper than 200 m depth.

  • PDF

Evidence of Vertical Mixing Caused by High Frequency Internal Waves along the Eastern Coast of Korea

  • Han, In-Seong;Lee, Ju;Jang, Lee-Hyun;Suh, Young-Sang;Seong, Ki-Tack
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.1
    • /
    • pp.41-49
    • /
    • 2008
  • Internal waves and internal tides occur frequently along the eastern coast of Korea. During the spring-tide period in April 2003, the East Korean Warm Current (EKWC) flowed near the Korean East Coast Farming Forecast System (KECFFS; a moored oceanographic measurement system), creating a strong thermocline at the intermediate layer. Weakened stratification and well-mixed water appeared frequently around the KECFFS, with duration of approximately 1 day. The results suggest the following scenario. Baroclinic motion related to the internal tide generated high frequency internal waves around the thermocline. The breaking of those waves then created turbulence around the thermocline. After well-mixed water appeared, a current component with perpendicular direction to the EKWC appeared within the inertial period. The change in stratification around the KECFFS locally broke the geostrophic balance as a transient state. This local vertical mixing formed an ageostrophic current within the inertial period.

An asymptotic analysis of the Taylor-Proudman flow in a rapidly-rotating compressible fluid (압축성 회전유체에서 발생하는 Taylor-Proudman 유동에 대한 점근해석)

  • Park Jun Sang;Hyun Jae Min
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.341-344
    • /
    • 2002
  • A matched asymptotic analysis is conducted for a compressible rotating flow in a cylindrical container when a mechanical and/or a thermal disturbance is imposed on the wall. The system Ekman number is assumed to be very small. The conditions for the Taylor-Proudman column in the interior, which were also given in the companion paper Park & Hyun, 2002) by means of the energy balancing analysis, have been re-derived. The concept of the variable, the energy content $e[{\equiv}T+2 {\alpha}^2 {\gamma}{\nu}]$, is reformulated, and its effectiveness in characterizing the energy transport mechanism is delineated. It is seen that, under the condition of the Taylor-Proudman column, numerous admissible theoretical solutions for interior flow exist with an associated wail boundary condition. Some canonical examples are illustrated with comprehensive physical descriptions. The differential heating problem on the top and bottom endwall disks is revisited by using the concept of the energy content. The results are shown to be in line with the previous findings.

  • PDF

Physical Structure of Eddies in the Southwestern East Sea (동해남서해역 와류의 물리적구조)

  • 이흥재;변상경
    • 한국해양학회지
    • /
    • v.30 no.3
    • /
    • pp.170-183
    • /
    • 1995
  • Eddies and surface current field in the southwestern part of the East Sea were investigated using satellite-tracked drifters, CTD, and ADCP from November 1992 to September 1993. Trajectories of surface drifters provided information for the first time on the meandering motion of the East Korean Warm Current in the Ullung Basin (referred as UB) and clearly indicated the existence of cyclonic and anticyclonic eddies of various scales. Anticyclonic eddies persisting for a relatively long period were observed in UB and the southwestern corner of the Northern (Japan) Basin (SNB), while a cyclonic eddy was found in the coastal area between Sokcho and Donghae during the summer. Analysis shows that the eddy in UB behaved as a stationary eddy at least during the observation period and the cyclonic eddy was closely related to the existence of a cold water mass. The anticyclonic eddy in SNB was larger than that in UB, but much elongated in shape. The eddy in UB is characteristic of major and minor axes of about 120 and 70 km, revolution period of 13.6 days, mean swirl velocity of about 24 cm/s, and mean eddy kinetic energy of 392 cm$\^$2//s$\^$2/. The eddy in SNB is described as follows; major and minor axes of 168 and 86 km, period of 14.9 days, mean swirl velocity of 29 cm/s and mean eddy kinetic energy of 629 cm$\^$2//s$\^$2/. The mean translational speed is about 3 cm/s for both eddies. The agreement of the surface current pattern in UB observed by ADCP with the geostrophic flow pattern may suggest that the eddy in UB was nearly in geostrophic balance. The eddy was found to be strongly bottom-controlled.

  • PDF

A Three-Dimensional Galerkin-FEM Model with Density Variation (밀도 변화를 포함하는 3차원 연직함수 전개모형)

  • 이호진;정경태;소재귀;강관수;정종율
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.2
    • /
    • pp.123-136
    • /
    • 1996
  • A three-dimensional Galerkin-FEM model which can handle the temporal and spatial variation of density is presented. The hydrostatic approximation is used and density effects are included by means of conservation equation of heat and the equation of state. The finite difference grids are used in the horizontal plane and a set of linear-shape functions is used for the vertical expansion. The similarity transform is introduced to solve resultant matrix equations. The proposed model was first applied to the density-driven circulation in an idealized basin in the presence of the heat exchange between the air and the sea. The advection terms in the momentum equation were ignored, while the convection terms were retained in the heat equation. Coefficients of the vertical eddy viscosity and diffusivity were fixed to be constant. Calculation in a non-rotating idealized basin shows that the difference in heat capacity with depth gives rise to the horizontal gradient of temperature. Consequently, there is a steady new in the upper layer in the direction of increasing depth with compensatory counter flow .in the lower layer. With Coriolis force, geostrophic flow was predominant due to the balance between the pressure gradient and the Coriolis force. As a test in region of irregular topography, the model is applied to the Yellow Sea. Although the resultant flow was very complex, the character of the flow Showed to be geostrophic on the whole.

  • PDF

A Numerical Study on the Interaction of Ulleung Warm Eddy with Topography and Lateral Boundary (울릉 난수성 Eddy와 해저지형과의 상호작용에 관한 수치모델 연구)

  • Lim, Keun-Sik;Kim, Kuh
    • 한국해양학회지
    • /
    • v.30 no.6
    • /
    • pp.565-583
    • /
    • 1995
  • We have used a nonlinear quasi-geostrophic model to study effects of lateral friction and bottom topography on the motion of warm eddies. The two empirical orthogonal functions of the stream function, accounting for the vertical structure, represent the barotropic and first baroclinic dynamic modes. This model is integrated 360 days on a 1000 km ${\times}$ 1000 km domain with a resolution of 10 km ${\times}$ 10 km including both the thermocline and idealized topography of the East Sea. Prescribed inflow through the Korea Strait is compensated by outflow through the Tsugaru Strait. The balance between the nonlinear advection term and the planetary ${\beta}$-effect tends to make northward movement of warm eddy over a flat bottom. The motion of a warm eddy over a sloping topography can be dominated by the nonlinear advection, while nonlinearity plays a secondary role over a flat topography. For eddies dispersing over topography, the nonlinear tendency is a function of time. For a strong warm eddy, northward propagation can occur. For intermediate strength of eddies one might expect a balance between the nonlinear term and the topographic ${\beta}$-effect. As nonlinearity decreases with eddy dispersion, southward motion along the slope may occur by such as a topographic Rossby wave. Our numerical simulations have confirmed the importance of lateral friction on eddy motions, in such a way that the northward penetration of the warm eddy increases drastically by the decrease of the lateral friction. The northward motion of warm eddy can be prevented by reducing the Reynolds number sufficiently. We have also demonstrated the crucial role of topographic effects in the eddy motion process.

  • PDF

Numerical Model Study for Structure and Distribution of the Keum River Plume (금강 풀룸의 구조와 분포에 대한 수치모델 연구)

  • 신은주;이상호;최현용
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.157-170
    • /
    • 2002
  • To examine the structure and distribution of the Keum River plume produced by continuous river discharge we carried out three-dimensional numerical model experiments with or without Coriolis force and tide. When Coriolis force is included but tide is not the model plume forms the clockwise circulation north of southern channel in the developing stage. As the plume expansion progresses the center of circulation moves to the southwest, with fuming the discharging axis of low-salinity water to the southwest from the mouth of southern channel. These results are explained mainly in terms of barotropic geostrophy by surface slope maintained with accumulated low-salinity(buoyant) water in front of the estuary mouth due to of offshore strong salinity front. When the M$_2$ tide is included the model plume extends farther to the northwest, forming large tongue-like salinity distribution. The tidally averaged surface flows of the offshore plume are mainly in geostrophic balance. These changes in plume distribution are explained in terms of low-salinity water advection by tidal excursion and active tidal mixing; the former supplies low salinity water to the north off the estuary mouth and the later increases mean sea level along the plume and surface salinity in northern shallow coastal area. The main features of observed Keum River plume(Lee et al., 1999; Choi et al., 1999), which showed the northwestward deflection of the plume axis and northward deepening of the plume thickness from the estuary mouth region, are well reproduced by the model in which tide is included.

A STUDY ON THE IONOSPHERE AND THERMOSPHERE INTERACTION BASED ON NCAR-TIEGCM: DEPENDENCE OF THE INTERPLANETARY MAGNETIC FIELD (IMF) ON THE MOMENTUM FORCING IN THE HIGH-LATITUDE LOWER THERMOSPHERE (NCAR-TIEGCM을 이용한 이온권과 열권의 상호작용 연구: 행성간 자기장(IMF)에 따른 고위도 하부 열권의 운동량 강제에 대한 연구)

  • Kwak, Young-Sil;Richmond, Arthur D.;Ahn, Byung-Ho;Won, Young-In
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.2
    • /
    • pp.147-174
    • /
    • 2005
  • To understand the physical processes that control the high-latitude lower thermospheric dynamics, we quantify the forces that are mainly responsible for maintaining the high-latitude lower thermospheric wind system with the aid of the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM). Momentum forcing is statistically analyzed in magnetic coordinates, and its behavior with respect to the magnitude and orientation of the interplanetary magnetic field (IMF) is further examined. By subtracting the values with zero IMF from those with non-zero IMF, we obtained the difference winds and forces in the high-latitude 1ower thermosphere(<180 km). They show a simple structure over the polar cap and auroral regions for positive($B_y$ > 0.8|$\overline{B}_z$ |) or negative($B_y$ < -0.8|$\overline{B}_z$|) IMF-$\overline{B}_y$ conditions, with maximum values appearing around -80$^{\circ}$ magnetic latitude. Difference winds and difference forces for negative and positive $\overline{B}_y$ have an opposite sign and similar strength each other. For positive($B_z$ > 0.3125|$\overline{B}_y$|) or negative($B_z$ < -0.3125|$\overline{B}_y$|) IMF-$\overline{B}_z$ conditions the difference winds and difference forces are noted to subauroral latitudes. Difference winds and difference forces for negative $\overline{B}_z$ have an opposite sign to positive $\overline{B}_z$ condition. Those for negative $\overline{B}_z$ are stronger than those for positive indicating that negative $\overline{B}_z$ has a stronger effect on the winds and momentum forces than does positive $\overline{B}_z$ At higher altitudes(>125 km) the primary forces that determine the variations of tile neutral winds are the pressure gradient, Coriolis and rotational Pedersen ion drag forces; however, at various locations and times significant contributions can be made by the horizontal advection force. On the other hand, at lower altitudes(108-125 km) the pressure gradient, Coriolis and non-rotational Hall ion drag forces determine the variations of the neutral winds. At lower altitudes(<108 km) it tends to generate a geostrophic motion with the balance between the pressure gradient and Coriolis forces. The northward component of IMF By-dependent average momentum forces act more significantly on the neutral motion except for the ion drag. At lower altitudes(108-425 km) for negative IMF-$\overline{B}_y$ condition the ion drag force tends to generate a warm clockwise circulation with downward vertical motion associated with the adiabatic compress heating in the polar cap region. For positive IMF-$\overline{B}_y$ condition it tends to generate a cold anticlockwise circulation with upward vertical motion associated with the adiabatic expansion cooling in the polar cap region. For negative IMF-$\overline{B}_z$ the ion drag force tends to generate a cold anticlockwise circulation with upward vertical motion in the dawn sector. For positive IMF-$\overline{B}_z$ it tends to generate a warm clockwise circulation with downward vertical motion in the dawn sector.