• Title/Summary/Keyword: Geospatial data sets

Search Result 28, Processing Time 0.02 seconds

Line Matching Method for Linking Wayfinding Process with the Road Name Address System (길찾기 과정의 도로명주소 체계 연계를 위한 선형 객체 매칭 방법)

  • Bang, Yoon Sik;Yu, Ki Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.4
    • /
    • pp.115-123
    • /
    • 2016
  • The road name address system has been in effect in Korea since 2012. However, the existing address system is still being used in many fields because of the difference between the spatial awareness of people and the road name address system. For the spatial awareness based on the road name address system, various spatial datasets in daily life should be referenced by the road names. The goal of this paper is to link the road name address system with the wayfinding process, which is closely related to the spatial awareness. To achieve our goal, we designed and implemented a geometric matching method for spatial data sets. This method generates network neighborhoods from road objects in the 'road name address map' and the 'pedestrian network data'. Then it computes the geometric similarities between the neighborhoods to identify corresponding road name for each object in the network data. The performance by F0.5 was assessed at 0.936 and it was improved to 0.978 by the manual check for 10% of the test data selected by the similarity. By help of our method, the road name address system can be utilized in the wayfinding services, and further in the spatial awareness of people.

Reliability of the Agro-climatic Atlases Based on the 30-Year Average Climate Data (평년 평균기후자료 기반 농업기후도의 신뢰도)

  • Kim, Jin-Hee;Kim, Dae-jun;Kim, Soo-ock
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.110-119
    • /
    • 2017
  • The agroclimatic indices are produced by statistical analysis based on primary climate data (e.g., temperature, precipitation, and solar irradiance) or driving agronomic models. This study was carried out to evaluate how selection of daily temperature for a climate normal (1983-2012) affected the precision of the agroclimatic indices. As a first step, averaged daily 0600 and 1500 LST temperature for a climate normal were produced by geospatial schemes based on topo-climatology ($365days{\times}1$ set, EST normal year). For comparison, 30 years daily temperature data were generated by applying the same process ($365days{\times}30sets$), and calculated mean of daily temperature (OBS normal year). The flowering date of apple 'Fuji' cultivar, the last frost date, and the risk of late frost were estimated based on EST normal year data and compared with the results from OBS normal year. The results on flowering date showed 2.9 days of error on average. The last frost date was of 11.4 days of error on average, which was relatively large. Additionally, the risk of the late frost was determined by the difference between the flowering and the last frost date. When it was determined based on the temperature of EST normal year, Akyang was classified as a risk area because the results showed that the last frost date would be the same or later than the flowering date in the 12.5% of area. However, the temperature of OBS normal year indicated that the area did not have the risk of a late frost. The results of this study implied that it would be necessary to reduce the error by replacing the EST method with the OBS method in the future.

Decision Making Support System for Water Supply Facilities Planning using Geographic Information System (GIS를 이용한 상수도(上水道) 계획(計劃) 의사결정(意思決定) 지원(支援)시스템 연구(硏究))

  • Ha, Sung-Ryung;Kim, Ju-Hwan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.3 no.2 s.6
    • /
    • pp.101-113
    • /
    • 1995
  • In pipeline planning, the systematic and reasonal management of topographical and spatial data are needed in order to omprove the availibilities for data analysis and the effective combinations of spatial informations. According to that fact, DBMS (Database Management System) and DSS(Decision making Support System) have to be developed for the planning of water supply system Also, the economic selection for harmonious delivery of water to target area, since the alternatives of pre-designed pipeline are influenced by hydraulic stability and geographic characteristics. In this study, GIS technique for water supply planning and management which stores graphic features and attributes as digital data sets is considered and engineering application programs are integrated for effective planning of water supply system. Decision making support system based on analyzing technical, Social and economical aspects is developed for the extension of water supply facilities and pipeline configurations. Especially, Hydraulic, land-use and economic influences are considered as important factors for the purpose of developing the system. Hydraulic analysis program(SAPID) for pipeline flow which is already developed in Water Resources Research Institute and economic analysis program(ECOVEL) are integrated with GIS for resonable decision making. Every possible aspects in pipeline planning for water supply is reviewed and the applicabilities of developed system into the field are evaluated.

  • PDF

Impact Assessment of Climate Change by Using Cloud Computing (클라우드 컴퓨팅을 이용한 기후변화 영향평가)

  • Kim, Kwang-S.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.2
    • /
    • pp.101-108
    • /
    • 2011
  • Climate change could have a pronounced impact on natural and agricultural ecosystems. To assess the impact of climate change, projected climate data have been used as inputs to models. Because such studies are conducted occasionally, it would be useful to employ Cloud computing, which provides multiple instances of operating systems in a virtual environment to do processing on demand without building or maintaining physical computing resources. Furthermore, it would be advantageous to use open source geospatial applications in order to avoid the limitations of proprietary software when Cloud computing is used. As a pilot study, Amazon Web Service ? Elastic Compute Cloud (EC2) was used to calculate the number of days with rain in a given month. Daily sets of climate projection data, which were about 70 gigabytes in total, were processed using virtual machines with a customized database transaction application. The application was linked against open source libraries for the climate data and database access. In this approach, it took about 32 hours to process 17 billion rows of record in order to calculate the rain day on a global scale over the next 100 years using ten clients and one server instances. Here I demonstrate that Cloud computing could provide the high level of performance for impact assessment studies of climate change that require considerable amount of data.

Coordinates Computation of the EAREF 2012.0 for Earth Observations in the East-Asia Region (동아시아지역의 GNSS CORS 지구관측 네트워크(EAREF 2012.0) 좌표산정 연구)

  • Lee, Young-Jin;Jung, Kwang-Ho;Ryu, In-Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.1
    • /
    • pp.11-22
    • /
    • 2013
  • EAREF(East-Asia Reference Frame) is based on the Eurasian Plate which is considered relatively stable. It is managing the coordinate reference system by a specific epoch through the networking of GNSS CORS of the East-Asia region covering North-east and South-east Asia. Also it'll be the goal to assist integrating the geospatial information management. This study aims to estimate the precise coordinates of EAREF in the East-Asia region at the epoch of January 1st of 2012 (2012.0) after the Great East Japan Earthquake. It is related to 1st stage study for construction of data sets and made up the data processing techniques through the various experiments to upgrade the accuracy. Based on the results of the study, we calculated the initial precise coordinates of the EAREF network from the 2012.0 epoch covering the East-Asia region. The accuracy of the estimated coordinates was compared with the weekly solution provided by the IGS analysis centre. The differences were 0.004m, 0.007m and 0.009m at the directions of X, Y and Z respectively. In addition, this study reviews the next procedure how to implement and upgrade the EAREF network.

A Prospect on the Changes in Short-term Cold Hardiness in "Campbell Early" Grapevine under the Future Warmer Winter in South Korea (남한의 겨울기온 상승 예측에 따른 포도 "캠벨얼리" 품종의 단기 내동성 변화 전망)

  • Chung, U-Ran;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.3
    • /
    • pp.94-101
    • /
    • 2008
  • Warming trends during winter seasons in East Asian regions are expected to accelerate in the future according to the climate projection by the Inter-governmental Panel on Climate Change (IPCC). Warmer winters may affect short-term cold hardiness of deciduous fruit trees, and yet phenological observations are scant compared to long-term climate records in the regions. Dormancy depth, which can be estimated by daily temperature, is expected to serve as a reasonable proxy for physiological tolerance of flowering buds to low temperature in winter. In order to delineate the geographical pattern of short-term cold hardiness in grapevines, a selected dormancy depth model was parameterized for "Campbell Early", the major cultivar in South Korea. Gridded data sets of daily maximum and minimum temperature with a 270m cell spacing ("High Definition Digital Temperature Map", HDDTM) were prepared for the current climatological normal year (1971-2000) based on observations at the 56 Korea Meteorological Administration (KMA) stations and a geospatial interpolation scheme for correcting land surface effects (e.g., land use, topography, and site elevation). To generate relevant datasets for climatological normal years in the future, we combined a 25km-resolution, 2011-2100 temperature projection dataset covering South Korea (under the auspices of the IPCC-SRES A2 scenario) with the 1971-2000 HD-DTM. The dormancy depth model was run with the gridded datasets to estimate geographical pattern of change in the cold-hardiness period (the number of days between endo- and forced dormancy release) across South Korea for the normal years (1971-2000, 2011-2040, 2041-2070, and 2071-2100). Results showed that the cold-hardiness zone with 60 days or longer cold-tolerant period would diminish from 58% of the total land area of South Korea in 1971-2000 to 40% in 2011-2040, 14% in 2041-2070, and less than 3% in 2071-2100. This method can be applied to other deciduous fruit trees for delineating geographical shift of cold-hardiness zone under the projected climate change in the future, thereby providing valuable information for adaptation strategy in fruit industry.

Urban Growth Prediction each Administrative District Considering Social Economic Development Aspect of Climate Change Scenario (기후변화시나리오의 사회경제발전 양상을 고려한 행정구역별 도시성장 예측)

  • Kim, Jin Soo;Park, So Young
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.53-62
    • /
    • 2013
  • Land-use/cover changes not only amplify or alleviate influence of climate changes but also they are representative factors to affect environmental change along with climate changes. Thus, the use of land-use/cover changes scenario, consistent climate change scenario is very important to evaluate reliable influences by climate change. The purpose for this study is to predict and analyze the future urban growth considering social and economic scenario from RCP scenario suggested by the 5th evaluation report of IPCC. This study sets land-use/cover changes scenario based on storyline from RCP 4.5 and 8.5 scenario. Urban growth rate for each scenario is calculated by urban area per person and GDP for the last 25 years and regression formula based on double logarithmic model. In addition, the urban demand is predicted by the future population and GDP suggested by the government. This predicted demand is spatially distributed by the urban growth probability map made by logistic regression. As a result, the accuracy of urban growth probability map is appeared to be 89.3~90.3% high and the prediction accuracy for RCP 4.5 showed higher value than that of RCP 8.5. Urban areas from 2020 to 2050 showed consistent growth while the rate of increasing urban areas for RCP 8.5 scenario showed higher value than that of RCP 4.5 scenario. Increase of urban areas is predicted by the fact that famlands are damaged. Especially RCP 8.5 scenario indicated more increase not only farmland but also forest than RCP 4.5 scenario. In addition, the decrease of farmland and forest showed higher level from metropolitan cities than province cities. The results of this study is believed to be used for basic data to clarify complex two-way effects quantitatively for future climate change, land-use/cover changes.

Plant Hardiness Zone Mapping Based on a Combined Risk Analysis Using Dormancy Depth Index and Low Temperature Extremes - A Case Study with "Campbell Early" Grapevine - (최저기온과 휴면심도 기반의 동해위험도를 활용한 'Campbell Early' 포도의 내동성 지도 제작)

  • Chung, U-Ran;Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.4
    • /
    • pp.121-131
    • /
    • 2008
  • This study was conducted to delineate temporal and spatial patterns of potential risk of cold injury by combining the short-term cold hardiness of Campbell Early grapevine and the IPCC projected climate winter season minimum temperature at a landscape scale. Gridded data sets of daily maximum and minimum temperature with a 270m cell spacing ("High Definition Digital Temperature Map", HD-DTM) were prepared for the current climatological normal year (1971-2000) based on observations at the 56 Korea Meteorological Administration (KMA) stations using a geospatial interpolation scheme for correcting land surface effects (e.g., land use, topography, and elevation). The same procedure was applied to the official temperature projection dataset covering South Korea (under the auspices of the IPCC-SRES A2 and A1B scenarios) for 2071-2100. The dormancy depth model was run with the gridded datasets to estimate the geographical pattern of any changes in the short-term cold hardiness of Campbell Early across South Korea for the current and future normal years (1971-2000 and 2071-2100). We combined this result with the projected mean annual minimum temperature for each period to obtain the potential risk of cold injury. Results showed that both the land areas with the normal cold-hardiness (-150 and below for dormancy depth) and those with the sub-threshold temperature for freezing damage ($-15^{\circ}C$ and below) will decrease in 2071-2100, reducing the freezing risk. Although more land area will encounter less risk in the future, the land area with higher risk (>70%) will expand from 14% at the current normal year to 23 (A1B) ${\sim}5%$ (A2) in the future. Our method can be applied to other deciduous fruit trees for delineating geographical shift of cold-hardiness zone under the projected climate change in the future, thereby providing valuable information for adaptation strategy in fruit industry.