• Title/Summary/Keyword: Geopotential Model

Search Result 58, Processing Time 0.026 seconds

The Global Geopotential Models in the Region of Korean Peninsula

  • Yun, Hong-Sic;Adam, Jozsef
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.12 no.1
    • /
    • pp.95-106
    • /
    • 1994
  • The purpose of this paper is to establish the optimum reference field as testing some geopotential model, gravity data and GPS data. We have to decide a best fitting geopotential model as a reference surface for establishing the optimum geoid solutions. We conduct some tests on the Korean Peninsula gravity data to establish which of the model would be prove to be the best one. Three ways were used to compare the geopotential coefficient solutions. One of the tests is to compare the residual gravity anomaly remaining after the anomaly computed from the geopotential model has been subtracted from the "observed" gravity anomaly. The second method is a comparison of several geopotential solutions in terms of differences in gravity anomalies and quasi-geoid undulations. The third method is a comparison between the undulation obtained by GPS and the corresponding undulation from each geopotential model. The result showed that OSU91A model is a best fitting model as a reference in the region of Korean Peninsula.Peninsula.

  • PDF

Evaluation of EGM2008 earth geopotential model using GPS/leveling data (GPS/leveling 데이터에 의한 EGM2008 지구중력장모델의 평가)

  • Lee, Suk-Bae;Kim, Jin-Soo;Kim, Cheol-Young
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.3
    • /
    • pp.117-126
    • /
    • 2008
  • Earth geopotential models were used to determine the reference surface in geoid modelling and many global geopotential models were developed after 1980's. Nowadays, EGM96 and EIGEN-GL04C geopotential models have been most widely used in the world, but what so called EGM2008 earth geopotential model were developed in 2008 by NGA. In this paper, we intended to compare the results of spherical harmonic analyses using the three geopotential model, EGM96, EIGEN-GL04C and EGM2008. So, the spherical harmonic analyses were performed up to degree and order 360(in case of EGM2008, up to degree and order 720, 1440, 2190 in addition), on each $1'{\times}1'$grid point in and around Korean peninsula. Geometric geoid were calculated at 464 GPS/leveling points for accuracy evaluation and then the results of three geopotential models were compared to geometric geoid. The results show that the accuracy of EGM2008 is improved considerablely compared to EGM96 and EIGEN-GL04C and it is possible to calculate geoidal heights within 14cm standard deviation and 5.5cm standard deviation after LSC fitting in and around Korean peninsula using EGM2008 geopotential model.

  • PDF

Accuracy Analysis of New Geopotential Model using GPS/Levelling Data (GPS/Levelling데이터를 사용한 새로운 지구중력장모델의 정확도 분석)

  • Yun Hong-Sic;Cho Jae-Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.4
    • /
    • pp.353-358
    • /
    • 2005
  • The purpose of this paper is to evaluate a new geopotential model, EIGEN-CG01C which had been developed from CHAMP and GRACE mission observations and surface gravity data. The accuracy analysis was conducted by comparing the geoidal heights computed from two types of geopotential models (i.e., EIGEN-CG01C and EGM96) with spirit leveled GPS bench mark. To this end, three hundred twenty GPS leveled bench marks are used as bases for the numerical investigation. From the analysis, it was possible to conclude that EIGEN-CG01C was more suitable to upgrade the KGEOID 98 since the results that the EGM96 was slightly biased.

Evaluation of Ultra-high and High Degree Geopotential Models for Improving the KGEOID98

  • Yun, Hong-Sic
    • Korean Journal of Geomatics
    • /
    • v.2 no.1
    • /
    • pp.7-15
    • /
    • 2002
  • Recent development of ultra-high and high degree Earth geopotential model opens new avenues to determine the Earth gravity field through spectral techniques to a very high accuracy and resolution. However, due to data availability, quality, and type, the performance of these new EGMs needs to be validated in regional or local scale geoid modeling. For establishing the best reference surface of geoid determination, recent geopotential models are evaluated using GPS/Leveling-derived geometric geoid and the Korean gravimetrical GEOID (KGEOID98) developed by National Geography Institute in 1998. Graphical and statistical comparisons are made for EGM96, GFZ97, PGM2000A and GPM98A models. The mean and standard deviation of difference between geometric height and geoid undulation calculated from GFZ97 are $1.9\pm{46.7}\;cm$. It is shown that the GFZ97 and the GPM98A models are better than the others in the Korean peninsula because the GFZ97 has a smaller bias. It means that the KGEOID98 needs some improvement using the GFZ97 instead of EGM96.

  • PDF

GPS/Levelling Geoid of the Southern Korean Peninsula

  • Choi, Kwang-Sun;Lee, Jung-Mo
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.25 no.1
    • /
    • pp.15-22
    • /
    • 1997
  • The GPS/levelling geoid calculated from GPS survey that data at 123 bench marks represents an appropriate regional geoid of the southern Korean peninsula. The GPS/levelling geoid fits best to the geoid calculated from the EGM96 geopotential model of degree and order to 360 with RMS difference 0.176 m. The good agreement of the GPS/levelling geoid with the EGM96 geoid suggests that the bench mark network is well established in Korea and the EGM96 geopotential model well represents the gravity field in the southern Korean peninsula.

  • PDF

The Effects of the IERS Conventions (2010) on High Precision Orbit Propagation

  • Roh, Kyoung-Min;Choi, Byung-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.41-50
    • /
    • 2014
  • The Earth is not perfectly spherical and its rotational axis is not fixed in space, and these geophysical and kinematic irregularities work as dominant perturbations in satellite orbit propagation. The International Earth Rotation Service (IERS) provides the Conventions as guidelines for using the Earth's model and the reference time and coordinate systems defined by the International Astronomical Union (IAU). These guidelines are directly applied to model orbital dynamics of Earth satellites. In the present work, the effects of the latest conventions released in 2010 on orbit propagation are investigated by comparison with cases of applying the previous guidelines, IERS Conventions (2003). All seven major updates are tested, i.e., for the models of the precession/nutation, the geopotential, the ocean tides, the ocean pole tides, the free core nutation, the polar motion, and the solar system ephemeris. The resultant position differences for one week of orbit propagation range from tens of meters for the geopotential model change from EGM96 to EGM2008 to a few mm for the precession/nutation model change from IAU2000 to IAU2006. The along-track differences vary secularly while the cross-track components show periodic variation. However, the radial-track position differences are very small compared with the other components in all cases. These phenomena reflect the variation of the ascending node and the argument of latitude. The reason is that the changed models tested in the current study can be regarded as small fluctuations of the geopotential model from the point of view of orbital dynamics. The ascending node and the argument of latitude are more sensitive to the geopotential than the other elements. This study contributes to understanding of the relation between the Earth's geophysical properties and orbital motion of satellites as well as satellite-based observations.

Geoidal Heights Analyses in and around Korean Peninsula using EGM96 and OSU91A Geopotential Model (EGM96과 OSU91A 지오포텐셜 모델에 의한 한반도 일원에서의 지오이드 비교분석)

  • 이석배;최재화
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.15 no.1
    • /
    • pp.131-139
    • /
    • 1997
  • Geopotential models were used to determine the reference surface in geoid modelling and until now, OSU91A model has been most widely used in the world. But what so called EGM96, GSFC/DMA geopotential model published in the latter half of the 1996 by GSFC/DMA project. In this paper, we intended to compare the results of spherical harmonic analyses using the both geopotential model and the spherical harmonic analyses performed up to degree and order 300 and the gravimetric geoidal heights considering gravity data on each $3'\times{3'}$ grid point in and around Korean peninsula. The results showed that the average geoidal height of study area computed from EGM96 is larger 0.40 m than that computed from OSU91A and the gravimetric geoidal heights us-ing EGM96 is larger 0.35 m than that using OSU91A model.

  • PDF

A study on the Geoid of the GPS/Leveling and Geopotential Model (GPS/Leveling과 지오포텐셜 모델 지오이드 고찰)

  • 고인세;조진동
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.2
    • /
    • pp.129-134
    • /
    • 2000
  • To utilize the survey method using the geodetic satellite GPS, we tried to analysis the GPS/Leveling and the geopotential model of the 26 GPS observation points including 23 BM and 3 triangulation points with approximately 16-km interval selected from the Andong geographic map with a scale of 1:250,000. The average deviations of the geopotential model calculated from the results of analysis to the GPS/Leveling and the previously developed geopotential models(EGM96, OSU91A, and KGEOID), are 0.493 m, 0.277 m, and 0.195 m, respectively and RMS errors are $\pm$0.299 m, $\pm$0.152 m, and $\pm$ 0.133 m. The general trend of geoid undulations, however, shows an increasing pattern to the NW-SE direction. It has been also reported that the geoid undulation related with topographic-highs and geoid-highs although very poor relationship is shown in this area.

  • PDF

Precision Evaluation of Recent Global Geopotential Models based on GNSS/Leveling Data on Unified Control Points

  • Lee, Jisun;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.2
    • /
    • pp.153-163
    • /
    • 2020
  • After launching the GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) which obtains high-frequency gravity signal using a gravity gradiometer, many research institutes are concentrating on the development of GGM (Global Geopotential Model) based on GOCE data and evaluating its precision. The precision of some GGMs was also evaluated in Korea. However, some studies dealt with GGMs constructed based on initial GOCE data or others applied a part of GNSS (Global Navigation Satellite System) / Leveling data on UCPs (Unified Control Points) for the precision evaluation. Now, GGMs which have a higher degree than EGM2008 (Earth Gravitational Model 2008) are available and UCPs were fully established at the end of 2019. Thus, EIGEN-6C4 (European Improved Gravity Field of the Earth by New techniques - 6C4), GECO (GOCE and EGM2008 Combined model), XGM2016 (Experimental Gravity Field Model 2016), SGG-UGM-1, XGM2019e_2159 were collected with EGM2008, and their precisions were assessed based on the GNSS/Leveling data on UCPs. Among GGMs, it was found that XGM2019e_2159 showed the minimum difference compared to a total of 5,313 points of GNSS/Leveling data. It is about a 1.5cm and 0.6cm level of improvement compare to EGM2008 and EIGEN-6C4. Especially, the local biases in the northern part of Gyeonggi-do, Jeju island shown in the EGM2008 was removed, so that both mean and standard deviation of the difference of XGM2019e_2159 to the GNSS/Leveling are homogeneous regardless of region (mountainous or plain area). NGA (National Geospatial-Intelligence Agency) is currently in progress in developing EGM2020 and XGM2019e_2159 is the experimentally published model of EGM2020. Therefore, it is expected that the improved GGM will be available shortly so that it is necessary to verify the precision of new GGMs consistently.

Subseasonal-to-Seasonal (S2S) Prediction Skills of GloSea5 Model: Part 1. Geopotential Height in the Northern Hemisphere Extratropics (GloSea5 모형의 계절내-계절(S2S) 예측성 검정: Part 1. 북반구 중위도 지위고도)

  • Kim, Sang-Wook;Kim, Hera;Song, Kanghyun;Son, Seok-Woo;Lim, Yuna;Kang, Hyun-Suk;Hyun, Yu-Kyung
    • Atmosphere
    • /
    • v.28 no.3
    • /
    • pp.233-245
    • /
    • 2018
  • This study explores the Subseasonal-to-Seasonal (S2S) prediction skills of the Northern Hemisphere mid-latitude geopotential height in the Global Seasonal forecasting model version 5 (GloSea5) hindcast experiment. The prediction skills are quantitatively verified for the period of 1991~2010 by computing the Anomaly Correlation Coefficient (ACC) and Mean Square Skill Score (MSSS). GloSea5 model shows a higher prediction skill in winter than in summer at most levels regardless of verification methods. Quantitatively, the prediction limit diagnosed with ACC skill of 500 hPa geopotential height, averaged over $30^{\circ}N{\sim}90^{\circ}N$, is 11.0 days in winter, but only 9.1 days in summer. These prediction limits are primarily set by the planetary-scale eddy phase errors. The stratospheric prediction skills are typically higher than the tropospheric skills except in the summer upper-stratosphere where prediction skills are substantially lower than upper-troposphere. The lack of the summer upper-stratospheric prediction skill is caused by zonal mean error, perhaps strongly related to model mean bias in the stratosphere.