• Title/Summary/Keyword: Geophysical logging

Search Result 118, Processing Time 0.028 seconds

Application of hydrogeological and geophysical methods to delineate leakage pathways in an earth fill dam (사력댐 누수경로 파악을 위한 수리지질과 지구물리 방법의 적용)

  • Song Sung-Ho;Song Yoonho;Kwon Byung-Doo
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.92-96
    • /
    • 2005
  • Comprehensive field surveys, including various hydrogeological and geophysical methods, were carried out to appraise the applicability of those methods to a leakage problem at the Sandong earth fill dam in southwestern Korea. The methods applied in the fold site were tracer tests, monitoring of drawdown and leakage with discharge of reservoir water, electrical resistivity surveys using the dipole-dipole array, self-potential (SP), and temperature logging methods. The leakage pattern in the reservoir wall was demonstrated by hydrogeological methods and was further clarified by the geophysical surveys. Leakage turned out to be through the right abutment of the reservoir wall. In this study, we conformed that the electrical resistivity method is effective in detecting the zones favorable to leakage, and SP methods are useful for delineating the leakage pathways themselves, because leaks generate strong streaming-potential anomalies.

Proposed Survey Steps for Investigation of Land-Creeping Susceptibility Areas: A Focus on Geophysical Mapping of the Yongheung-dong, Pohang, Korea

  • Kim, Jeong-In;Lee, Sun-Joong;Kim, Kwan-Soo;Lee, Jae-Eun;Sa, Jin-Hyun;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.269-281
    • /
    • 2021
  • Land creeping is the imperceptibly slow, steady, downward movement o f slope-forming soil or rock. Because creep-related failures occur frequently on a large scale without notice, they can be hazardous to both property and human life. Korea Forest Service has operated the prevention and response system from land creeping which has been on the rise since 2018. We categorized and proposed three survey steps (e.g., preliminary, regional, detailed) for investigation of creeping susceptibility site with a focus on geophysical mapping of a selected test site, Yongheung-dong, Pohang, Korea. The combination of geophysical (dipole-dipole electrical resistivity tomography and reciprocal seismic refraction technique, well-logging), geotechnical studies (standard penetrating test, laboratory tests), field mapping (tension cracks, uplift, fault), and comprehensive interpretation of their results provided the reliable information of the subsurface structures including the failure surface. To further investigate the subsurface structure including the sliding zone, we performed high-resolution geophysical mapping in addition to the regional survey. High-resolution seismic velocity structures are employed for stability analysis because they provided more simplified layers of weathering rock, soft rock, and hard rock. Curved slip plane of the land creeping is effectively delineated with a shape of downslope sliding and upward pushing at the apex of high resistive bedrock in high-resolution electrical resistivity model with clay-mineral contents taken into account. Proposed survey steps and comprehensive interpretation schemes of the results from geological, geophysical, and geotechnical data should be effective for data sets collected in a similar environment to land-creeping susceptibility area.

Integrated Interpretation of ERT Data from the Mineralized Zone in Geumpung Mine (금풍광산 광화대에 대한 전기비저항 토모그래피탐사 자료의 복합해석)

  • Jung, Yeon-Ho;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.322-331
    • /
    • 2007
  • In this study, electrical resistivity tomography (ERT) were conducted to find the mineralized zone at the Geumpung mine in Dojeon-ri, Susan-myeon, Jecheon-si, Chungcheongbuk-do. The deviation of the inclined borehole was measured to obtain the exact positions of the electrodes for correcting apparent resistivity values from ERT. Geophysical loggings such as resistivity and natural gamma were conducted to obtain the properties of the material near the borehole. Measurements of the physical properties of the cores, such as porosity, water content, density, susceptibility, resistivity were performed to analyze the correlation between physical properties and resistivity. Grade analysis for core sample was also conducted to identify relationship between grade and resistivity. Rock property analysis shows that the resistivity is more dominated by susceptibility and grade than by porosity and water content in the mineralized zone. The results of ERT are well consistent with geophysical logging data and geologic column. So ERT is powerful method to identify conductive mineralized zone.

A study on slim-hole density logging based on numerical simulation (소구경 시추공에서의 밀도검층 수치모델링 연구)

  • Ku, Bonjin;Nam, Myung Jin;Hwang, Seho
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.227-234
    • /
    • 2012
  • In this study, we make simulation of density log using a Monte Carlo N-Particle (MCNP) algorithm to make an analysis on density logging under different borehole environments, since density logging is affected by various borehole conditions like borehole size, density of borehole fluid, thickness and type of casing, and so on. MCNP algorithm has been widely used for simulation of problems of nuclear particle transportation. In the simulation, we consider the specific configuration of a tool (Robertson Geologging Co. Ltd) that Korea institute of geoscience and mineral resources (KIGAM) has used. In order to measure accurate bulk density of a formation, it is essential to make a calibration and correction chart for the tool under considerations. Through numerical simulation, this study makes calibration plot of the density tool in material with several known bulk densities and with boreholes of several different diameters. In order to make correction charts for the density logging, we simulate and analyze measurements of density logging under different borehole conditions by considering borehole size, density of borehole fluid, and presence of casing.

Application of Geographic Information System for Synthetic Analysis of Multidisciplinary Data in Seawater Intrusion Assessment (해수침투 조사자료의 통합적 해석을 위한 GIS의 적용)

  • Choi Sun-Young;Hwang Seho;Park Kwon Gyu;Shin Je-Hyun;Yoon Wang-Jung
    • Spatial Information Research
    • /
    • v.12 no.3
    • /
    • pp.275-283
    • /
    • 2004
  • In order to effectively, and accurately assess seawater intrusion in coastal area, multidisciplinary data including geophysical, well logging, and hydrogeochemical data should be managed in systematical way. Such systematical management of data is critical key to improve the re-usability of the data as well as the accuracy of the assessment by means of providing a method of synthetic analysis. Therefore, for systematical management of multidisciplinary data in seawater intrusion problem, we have developed a database management system and 3-D visualization interface based on geographic information system in this, study. All geophysical survey, well logging, hydrochemical, as well as drilling, data are classified as attribute data using Microsoft Access, and joined with spatial information based on ArcView. The database management system and 3-D visualization interface to handle these data, also, developed using the script language of ArcView. We think the development of database and 3-D visualization system will improve the efficiency of data management, user-friendliness of data access, and accuracy of data analysis.

  • PDF

Estimation of Two-dimensional Distribution of Coefficient of Permeability from Electrical Logging and AMT Data in Yangsan Area (전기검층과 AMT 탐사자료를 이용한 양산지역의 2차원 투수계수분포 산출)

  • Lee, Tae-Jong;Park, Nam-Yoon;Choo, Seok-Yeon;Lee, Jong-Ho;Koh, Sung-Yil
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.64-70
    • /
    • 2003
  • A new approach of estimating the coefficient of permeability (COP) from resistivity has been developed, which can provide another good application tool of geophysical methods to geo-technical field. Borehole electrical logging and Lugeon test results in Yangsan area showed that resistivity is inversely proportional to the COP. For granite and andesite in Yansan area, the relation between the resistivity ($\rho$) and the COP (k) revealed that, $log(k){\approx}-0.85621\;log({\rho})+0.0031$. Derived relation is applied to AMT data acquired from a survey line along the tunnel. Two-dimensional resistivity distribution from AMT data was converted to two-dimensional COP section. The final COP section can be used as good input data for groundwater modeling.

Development of PCS and an experiment for performance evaluation (PCS(Pressure Core Sampler) 개발 및 성능평가실험)

  • Lee, Ha-jung;Kim, Hae-jin;Lee, Gye-gwang;Jung, Hyo-seok;Son, In-rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.973-980
    • /
    • 2015
  • With their wide geographical distribution, unconventional resources are continuously compared against conventional resources, but their development is expanding because TRRs (Technical Recoverable Resources) are similar to conventional resources. In particular, there is active development of unconventional gas resources such as shale gas, tight gas, CBM (coalbed methane) and gas hydrate. However, it is difficult to calculate the material properties of unconventional resources, especially the gas content, with current geophysical logging technology. Additionally, some overseas companies have monopolies on related equipment and materials. Therefore, this study developed a reservoir PCS (Pressure Core Sampler). It can collect core samples without gaseous loss by maintaining high pressure from the moment the core is sampled and record pressure and temperature in real time. Successful performance testing was also carried out for official verification of the manufactured PCS. The reservoir PCS will contribute to the acquisition of geophysical well logging data as well as accurate and reliable cores.

A Preliminary Conductivity Model Experiment for Determining Hydraulic Constants in Physical Model Borehole (시추공 수리전도도 상수를 결정하기 위한 전기전도도검층 기법을 이용한 예비모형실험)

  • 김영화;임헌태
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.48-56
    • /
    • 2003
  • A geophysical conductivity logging technique has been adopted to determine hydraulic constants using a simplified physical model that depicts the borehole condition. An experiment has been made by monitoring the conductivity change within the model hole using borehole environment water and incoming-outgoing water of different salinity, under the state of constant flow rate by maintaining balance between inflow and outflow. Conductivity variation features were observed that depended on flow rate, salinity contrasts between fluid within the hole and incoming-outgoing fluid, and density contrasts between fluid conductivity within the hole and incoming fluid. The results of the experiment show the uniform change of fluid conductivity within the hole with time, a fairly good correlation between the flow rate and the conductivity change rate. The geophysical conductivity logging technique can be an efficient tool for determining hydraulic constants if the model equation is verified by henceforward experiments.

A Study on the Applicability of Machine Learning Algorithms for Detecting Hydraulic Outliers in a Borehole (시추공 수리 이상점 탐지를 위한 기계학습 알고리즘의 적용성 연구)

  • Seungbeom Choi; Kyung-Woo Park;Changsoo Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.561-573
    • /
    • 2023
  • Korea Atomic Energy Research Institute (KAERI) constructed the KURT (KAERI Underground Research Tunnel) to analyze the hydrogeological/geochemical characteristics of deep rock mass. Numerous boreholes have been drilled to conduct various field tests. The selection of suitable investigation intervals within a borehole is of great importance. When objectives are centered around hydraulic flow and groundwater sampling, intervals with sufficient groundwater flow are the most suitable. This study defines such points as hydraulic outliers and aimed to detect them using borehole geophysical logging data (temperature and EC) from a 1 km depth borehole. For systematic and efficient outlier detection, machine learning algorithms, such as DBSCAN, OCSVM, kNN, and isolation forest, were applied and their applicability was assessed. Following data preprocessing and algorithm optimization, the four algorithms detected 55, 12, 52, and 68 outliers, respectively. Though this study confirms applicability of the machine learning algorithms, it is suggested that further verification and supplements are desirable since the input data were relatively limited.

A Bayesian Approach to Geophysical Inverse Problems (베이지안 방식에 의한 지구물리 역산 문제의 접근)

  • Oh Seokhoon;Chung Seung-Hwan;Kwon Byung-Doo;Lee Heuisoon;Jung Ho Jun;Lee Duk Kee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.262-271
    • /
    • 2002
  • This study presents a practical procedure for the Bayesian inversion of geophysical data. We have applied geostatistical techniques for the acquisition of prior model information, then the Markov Chain Monte Carlo (MCMC) method was adopted to infer the characteristics of the marginal distributions of model parameters. For the Bayesian inversion of dipole-dipole array resistivity data, we have used the indicator kriging and simulation techniques to generate cumulative density functions from Schlumberger array resistivity data and well logging data, and obtained prior information by cokriging and simulations from covariogram models. The indicator approach makes it possible to incorporate non-parametric information into the probabilistic density function. We have also adopted the MCMC approach, based on Gibbs sampling, to examine the characteristics of a posteriori probability density function and the marginal distribution of each parameter.