• Title/Summary/Keyword: Geomorphological Change

Search Result 123, Processing Time 0.024 seconds

A Study on Characteristics of Coastline Change in Eastern Coast Korea (한국 동해안의 변화특성)

  • 이종태
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.15 no.1
    • /
    • pp.35-42
    • /
    • 1979
  • This paper concerns the receding of the eastern coastline of Korean peninsula at a macroscopic point of view, the result is as following. 1. Eastern coast is gradually developed from maturity stage to full maturity stage. 2. The coastline recession due to sea level rise is amounted to the receding distance, x=0.045 m per yr. 3. The author proposes another classification from the new view point, which is classified by comparing quantities between river supplying sediment loads, and the littoral drifting due to wave actions. According this, eastern coast is receding(Type Q-A), and we could find it's geomorphological characteristics. 4. The general piofile of eastern coast sand beach is erosional storm profile(Type I) which accompany offshore bar. 5. From the wave measuring data of eastern coast(Hoopo port), I can derive the linear regression line of the exceedance probability of wave height from the log-normal distribution. $z=O. 113+4.335 log_lo H, r=0.983.$ Above equation made it possible to estimate $\omega[=P(H>H_c)]for the effective wave height H_c=2. Om4, 4. Om and their corresponding values are considerable (7.8%, 0.3%) 6. Eastern coastline certainly have the tendency of erosive and receding, owing to the sea level rise, poor sediment source and effective wave actions. It's very desirable to survey coastline evolution for a long time systematically, in order to make more elaborate diagnosis.

  • PDF

Application of Remote Sensing and GIS technology for monitoring coastal changes in estuary area of the Red river system, Vietnam

  • Lan, Pham Thi;Son, Tong Si;Gunasekara, Kavinda;Nhan, Nguyen Thi;Hien, La Phu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.529-538
    • /
    • 2013
  • Coastline is the most dynamic part of seascape since its shape is affected by various factors. Coastal zone is an area with immense geological, geomorphological and ecological interest. Monitoring coastal change is very important for safe navigation, coastal resource management. This paper shows a result of monitoring coastal morphological changes using Remote Sensing and GIS. Study was carried out to obtain intensity of erosion, deposition and sand bar movement in the Red River Delta. Satellite images of ALOS/AVNIR-2 and Landsat were used for the monitoring of coastal morphological changes over the period of 1975 to 2009. Band rationing and threshold technique was used for the coastline extraction. Tidal levels at the time of image acquisition varied from -0.89m to 2.87m. Therefore, coastline from another image at a different tidal level in the same year was considered to get the corrected coastline by interpolation technique. A series of points were generated along the coastal line from 1975 image and were established as reference points to see the change in later periods. The changes were measured in Euclidean distances from these reference points. Positive values represented deposition to the sea and negative values are erosion. The result showed that the Red river delta area expanded to the sea 3500m in Red river mouth, and 2873m in Thai Binh river mouth from 1975 to 2009. The erosion process occurred continuously from 1975 up to now with the average magnitude 23.77m/year from 1975 to 1989 and 7.85m/year from 2001 to 2009 in Giao Thuy area. From 1975 to 2009, total 1095.2ha of settlement area was eroded by sea. On the other hand, land expanded to the sea in 4786.24ha of mangrove and 1673.98ha of aquaculture.

Changes of River Morphology in the Mid-lower Part of Nakdong River Basin after the 4 Large River Project, South Korea (4대강 사업 후 낙동강 중·하류의 하중도와 제외지 지형변화)

  • Im, Ran-Young;Kim, Ji Yoon;Choi, Jong-Yun;Do, Yuno;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.188-194
    • /
    • 2015
  • River channel dredging and riparian development have been influenced morphology and quantity of natural river habitat. We compared distribution of riverside land and alluvial island in the Nakdong River with field survey and remote sensing analysis after the 4 Large River Project in South Korea. We digitized geomorphological elements, includes main channel, riverside land, and alluvial island by using georeferenced aerial photos taken in pre-dredging (2008) and post-dredging (2012) periods. Field survey was followed in 2012 for a ground truth of digitized boundaries and identification of newly constructed wetland types such as pond, channel, branch, and riverine type. We found that during the dredging period, riverside land and alluvial island were lost by 20.2% and 72.7%, respectively. Modification rate of riverside land was higher in the section of river kilometer 50~90, 140~180, and 210~270. Alluvial island had higher change rate in the section of river kilometer 50~70, 190~210, and 270~310. Average change rate for the riverside land and alluvial island was $-1.02{\pm}0.14km^2{\cdot}10km^{-1}$ and $-0.05{\pm}0.05km^2{\cdot}10km^{-1}$, respectively. Channel shaped wetlands (72.5%) constituted large portion of newly constructed wetlands.

Holocene Paleosols of the Upo Wetland, Korea

  • Nahm, Wook-Hyun;Kim, Ju-Yong;Yang, Dong-Yoon;Hong, Sei-Sun;Lee, Jin-Young;Kim, Jin-Kwan
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.167-168
    • /
    • 2003
  • The Upo wetland, the largest natural wetland in Korea, is located in Changnyeong-gun, Gyeongsannam Province ($35^{\circ}33'$ N, $128^{\circ}25'$ E), and 70 km upstream from the Nakdong River estuary. Unlike most other Korean wetlands that have been destroyed under the name of economic development, the Upo wetland has been able to preserve its precious ecosystem throughout the years. Thanks to increased public awareness about natural wetlands and environmental conservation, the Korean Ministry of Environment designated the Upo wetland an 'Ecological Conservation Area' on July 26th, 1997. On March 2nd of the following year, the Upo wetland (8.54 $\textrm{km}^2$) was designated a 'Protected Wetland' in accordance with the international Ramsar Treaty. A 4.49m long (from 9.73 to 5.24 m in altitude) UP-1 core ($35^{\circ}33'05"N$, $128^{\circ}25'17"E$), recovered in the marginal part of the Upo wetland, is divided into eight buried paleosol units of different ages on the basis of the abundance of color mottles and vertical color variations (Aslan et al., 1998). Radiocarbon datings suggested that the paleosol profile represent the last 5700 years. The entire section of the core was more or less subjected to pedogenetic processes, and shows very weak to moderate soil profile development. These Holocene paleosols are therefore regarded as synsedimentary soils of deluvium (deposits formed by floods) origin (Sycheva et al., 2003). Unit 1 to 5 paleosols are generally silt-rich and exhibit moderate profile development. The boundaries between the units are somewhat distinguishable, but not so clear cut. This is due to variable repeated combination of accumulation, denudation and soil forming processes within various periods. Mottle textures gradually decrease in abundance with increasing clay content in Unit 6, which results in weak profile development. The lower boundary of Unit 6 lies around about 2000 yrBP, the beginning of Subatlantic in Korea (Kim et al., 2001). Abrupt sediment textural change is detected in Unit 7, which is interpreted to indicate the human activities on the Upo wetland. Unit 8 represents the recent soil forming processes. The preliminary results of this ongoing study imply the primary factor for pedogenetic processes is the water table fluctuations related to the sedimentary textures like grain size distributions, and the geomorphological stability of the Upo wetland.o wetland.

  • PDF

Restoration of the Stream Runoff by the Physical Deterministic Modeling and Formulation of Water Balance for the Catchment of Byungchun River in Chungcheong Province in Korea (물리 결정 모델링에 의한 충청도 병천천 유역의 하천 유출량 복원과 물 수지 수립)

  • KIM, Man-Kyu
    • Journal of The Geomorphological Association of Korea
    • /
    • v.15 no.2
    • /
    • pp.37-53
    • /
    • 2008
  • This study has developed a water balance model for the catchment of Byungchun river using a BROOK90 4.4e physical deterministic water balance model with the long-term meterological data and stream run off data obtained from the basin of Byungchun river in Korea. It is intended that the validation model with calibrated model fitting parameter can build a long-term water balance plan for a period when meterological data are available but stream runoff data are not. Results of this study have satisfied the first expectation as an experiment for water balance modeling since measured stream runoff data have turned out to be very similar to simulated stream runoff data. Through the confirmation of model fitting parameters and validated simulation, water balance for the period of 1998 to 2006 has been restored. Unless the conditions of geomophology, vegetation, soil and land use change, meterological data alone can produce various hydrometeorological data related to stream runoff amount, soil water amount, and evapotranspiration. This study opens up a new horizon in restoring water balance in the past as well planning water balance in the present. The obtained results from this study are expected to be used in predicting future water balance in the wake of the changes in climate and vegetation in Korea.

Analysing of Forest Types in Chungnam Coastal area Using Multi-Temporal Satellite imagery and ASTER DEM Data (다중시기 위성영상과 ASTER DEM자료를 이용한 충남해안지역의 임상 변화 분석)

  • KIM, Jang-soo;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.1
    • /
    • pp.69-81
    • /
    • 2012
  • This study analyzed the relationship between the geomorphic factor and changes in forest types of the Chungnam coastal area using ASTER DEM and multi-temporal satellite imagery. The results showed that in case coniferous forests vary by altitudinal segments, reduction rate continuously increased up to 500m, but dropped upon exceeding 550 meters. Next, the variation rate of mixed forests by altitudinal segments decreased from less than 50m. However, the variation rate of mixed forests increased from more than 50m to 700m, but dropped upon exceeding 700m. Lastly, the variation rate of deciduous forests according to altitudinal segments increased at all altitudes. A sharp increase was found in segments of more than 550 meters. With regard to the changes in the distribution area of forest types according to slope aspects, coniferous forests showed a reduction in all slope aspects. The reduction rate was especially higher in northern, northwestern, western and northeastern aspects. Mixed forests manifested a high growth rate in northwestern, northern and western aspects, but slightly decreased in eastern and southeastern aspects. In addition, deciduous forests increased in all slope aspects, but the growth rate was especially high in eastern, southeastern, northeastern and southern aspects.

Analysis of Sedimentation and Erosion Environment Change around the Halmi-island, Anmyeondo in West Coast of Korea (안면도 할미섬 주변의 침식·퇴적환경 변화 분석)

  • KIM, Jang-soo;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.2
    • /
    • pp.123-132
    • /
    • 2012
  • In this study, we analyzed sedimentation and erosion environment around Halmiseom on Anmyeon Island using wind direction and wind speed data, gain size analysis data and datum-point measured values. To observe changes in sedimentation and erosion environment around Halmiseon, we installed datum points at 12 locations around Halmiseom and carried out at total of 32 field measurements from May 16th, 2010 to May 8th, 2012. The field measurement results showed that H-3, H-4, H-5 and H-9 points are dominated by sedimentation environment, and H-7, H-8, H-10, H-11 and H-12 points are dominated by erosion environment. Meanwhile, sedimentation and erosion appeared alternately at H-2 and H-6 points. These results indicate that a bank installed in the southwest side of Halmiseom prevented sand of the beach from moving to the northeast side, leaving the sand of the beach being deposited at the sites, and the northeast side, where sand was not provided from beach ridge of Halmiseon was dominated by sedimentation. That is, the southwest side of Halmiseom was dominated by sedimentation, but the northeast side was dominated by erosion in general. However, the opposite trends were observed at H-9 point of the northeast side and H-12 point of the southwest side. According to analysis, since H-9 point is located at the end of sand spit connected to Halmiseom, the supply of sediments by a tidal current is possible. On the other hand, it was difficult to analyze the cause of erosion in case of H-12 point located at the sand dune due to the short measurement period.

Reconstruction of Post-Glacial Environmental Changes in Yeongjong-do Island Based on Palynological Evidences (화분분석에 기초한 후빙기 영종도의 환경변화)

  • PARK, Ji-hoon;PARK, Kyeong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.2
    • /
    • pp.173-185
    • /
    • 2012
  • Authors performed pollen analysis in deposits at a coastal plain at Yeongjong-do Island located in Incheon, South Korea. Sampling site (7.2 m a.s.l.) belongs to the cool temperate deciduous broad-leaf forest. Environmental changes since 8,900 yrs B.P. reconstructed from pollen analysis are as follows; JS-I stage (c.a. 8,900~8,500 yrs B.P. ) was cool temperate northern mixed-forest which is comparable to the early PostGlacial pollen stage RI in Japan, in which Pinus and Quercus were dominant and Abies and Picea were also found. At that time, climate was relatively cooler and dryer than today. JS-II stage (sometime between 8,500~4,000 yrs B.P.) was Pinus-dominant coniferous forest, which is comparable to the mid-Post-Glacial pollen stage RII. Mixed forest of Pinus, Quercus and Carpinus was dominant in JS-III stage (c.a. 4,000 yrs B.P). We assumed that JS-II and JS-III stage were relatively warmer and more humid than JS-I stage, and were more like present conditions. JS-IV stage (sometime between 4,000~900 yrs B.P.) was Pinus-dominant coniferous forest which is comparable to the late Post-Glacial pollen stage RIII. JS-V stage (c.a. 900 yrs B.P. ~present) was second growth Pinus-dominant coniferous forest stage. During the last stage, non-arboreal pollen was more common than arboreal pollen and Fagopyrum appeared among the herbaceous plant, which indicates that it is comparable to the RIIIb stage which was the age of human interference. From the JS-V stage, humans in the study site started agricultural activities.

Investigations on Rock Cliff Development in Dunduri, West coast of Korea, Using Schmidt Hammer Rebound Values and OSL Chronology (슈미트해머 반발도와 OSL 연대에 기반한 둔두리 해식애의 형성과정)

  • CHOI, Kwang Hee;SEONG, Yeong Bae;CHOI, Jeong-Heon;JUNG, Pil Mo;LEE, Soo Yong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.1
    • /
    • pp.45-56
    • /
    • 2013
  • Rock strength test on Dunduri cliff, Chungnam province, Korea, was performed using N-type Schmidt hammer and the depositional ages of the sediments overlying the cliff were derived using OSL dating method. The averaged R-values of the cliffs investigated here were lower than those observed from the shore platforms, but with larger scatter in the former. R-values were negatively correlated to cliff face retreat, implying that the irregularity of the coastal rock faces was closely related to lithology as the weaker rocks retreated much faster than the harder rocks. The overlying deposit of the cliff tends to be thicker at valleys and were poorly sorted with angular to subangular clasts in a matrix of silt. The OSL ages (ca. 70-77 ka) presented here were older than the previously reported exposure ages (ca. 7-30 ka) of the cliff face. Therefore, it is likely that the present sea cliff was developed by expansion of the platform which had been covered by slope deposits since the last interglacial and exposed again during the Holocene.

A study on the granulometric and clastshape characteristic of gravel terrace deposit at Jeongdongjin area (정동진 단구 자갈층과 충진 물질의 입도 및 형상 특성에 대한 연구)

  • Kim, Jong Yeon;Yang, Dong Yoon;Shin, Won Jeong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.1
    • /
    • pp.17-33
    • /
    • 2016
  • Samples from newly exposed outcrop of sedimentary layers forming Jeongdongjin coastal terrace in Gangreung area are collected and analyzed to find the sedimentary environment. The site are located at the gentle hillslope of the terrace surface area. The height of the outcrop is about 8m and the altitude of it's highest part is 68~73m MSL. The lowest part of this out crop is the partly consolidated sand layer with gravel veneer within it. It is found that this part is not in-situ weathered sand stone through the OSL method. This sand layer is overlain by the gravel layer with sand matrix. The shapes of the gravels from this part are mainly 'platy', 'elongated', and 'bladed' by the index of Sneed and Folk(1958). In addition, mean roundness is not so high. It is sceptical to regard this part as marine sediments which are continuously exposed to erosional processes. The boundary between the lowest sand layer and gravel layer showing the abrupt change in forming material without any mixture or transitional zone, so gravels are seemed to deposited after some degree of consolidation of the lowest sand layer. In addition, the hight of the boundary between layers are changed by the place, so the surface of the partly consolidated sand layer is not flat and has irregularity on topography when it buried by gravels. Main part of this out crop is the poorly sorted coarse gravel(22.4mm) with sand matrix($1.36{\phi}$) layer with at least 2m thick covering the relatively fine gravels discussed above. Over 20% of particles have 'very platy', 'very elongated' and 'very bladed' shape and only less than 5% of particles have 'compact' shape, So this particles are also very hard to be regard as marine gravels which are abraded by marine processes. It can be concluded that this gravel layer formed by fluvial processes rather than coastal processes base on the form of the clast and sedimentary structure. The gravel layer is covered by fine($3{\sim}4{\phi}$) material layers of psudo-gleization which showing inter-bedding of red and white layers. Chemical composition of matrix and other fine materials should be analyzed in further studies. It is attempted to fine the burial ages of the sediment using OSL method, but failed by the saturation. So it can be assumed that these sediments have be buried over 120ka.