• Title/Summary/Keyword: Geomorphic deformation

Search Result 6, Processing Time 0.017 seconds

Fault-related Landforms and Geomorphological Processes Around Ungchon-Ungsang Areas in the Middle Part of the Dongrae Fault (동래 단층 중부 지역 웅촌-웅상 일대의 단층 지형과 지형 발달)

  • Lee, Gwang-Ryul;Park, Chung-Sun;Shin, Jae Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.1
    • /
    • pp.79-91
    • /
    • 2019
  • This study analyzed the distribution of fluvial landforms, fault-related geomorphic features and lineaments around the area of Ungchon-Ungsang in the Dongrae Fault, and discusses the charateristics of geomorphic development based on those. As a result, the NE-SW lineaments are predominantly developed in many numbers within the study area, and the NW-SE or N-S secondary lineaments are developed induced by multiple deformation with the Yangsan Fault. Geomorphologically, the early tectonic history of the Ungchon-Ungsang basin is largely divided into three stages ; 1) the Tertiary fault activity and formation of fracture zone, 2) development of erosional basin, 3) local crustal movements and development of fault-related topography. It is assumed that alluvial fans, deflected channel and stream piracy were formed by local tectonic movements related to faultings during the Quaternary.

Paleoseismological implications of liquefaction-induced structures caused by the 2017 Pohang Earthquake

  • Gihm, Yong Sik;Kim, Sung Won;Ko, Kyoungtae;Choi, Jin-Hyuck;Bae, Hankyung;Hong, Paul S.;Lee, Yuyoung;Lee, Hoil;Jin, Kwangmin;Choi, Sung-ja;Kim, Jin Cheul;Choi, Min Seok;Lee, Seung Ryeol
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.871-880
    • /
    • 2018
  • During and shortly after the 2017 Pohang Earthquake ($M_w$ 5.4), sand blows were observed around the epicenter for the first time since the beginning of instrumental seismic recording in South Korea. We carried out field surveys plus satellite and drone imagery analyses, resulting in observation of approximately 600 sand blows on Quaternary sediment cover in this area. Most were observed within 3 km of the epicenter, with the farthest being 15 km away. In order to investigate the ground's susceptibility to liquefaction, we conducted a trench study of a 30 m-long sand blow in a rice field 1 km from the earthquake epicenter. The physical characteristics of the liquified sediments (grain size, impermeable barriers, saturation, and low overburden pressure) closely matched the optimum ground conditions for liquefaction. Additionally, we found a series of soft sediment deformation structures (SSDSs) within the trench walls, such as load structures and water-escaped structures. The latter were vertically connected to sand blows on the surface, reflecting seismogenic liquefaction involving subsurface deformation during sand blow formation. This genetic linkage suggests that SSDS research would be useful for identifying prehistoric damage-inducing earthquakes ($M_w$ > 5.0) in South Korea because SSDSs have a lower formation threshold and higher preservational potential than geomorphic markers formed by surface ruptures. Thus, future combined studies of Quaternary surface faults and SSDSs are required to provide reliable paleoseismological information in Korea.

The Alluvial Fan Surface Deformation of the Northern Part of the Ulsan(Bulguksa) Active Fault System in the Southeastern Korea

  • Yoon, Soon-Ock;Hwang, Sang-Il
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.5-16
    • /
    • 2004
  • The geomorphic deformation of the alluvial fans by tectonic movement was investigated along the lineaments of the northem part of the Ulsan(Bulguksa) fault system. Based on the aerial photographs interpretation and field surveys Ulsan fault system was identified as an active reverse fault which has displaced the Quatemary fan deposits. Buguksa fault system strikes for the direction of NW-SE and N-S. These two lineaments of active fault are crossing at Jinty village in Gyeongju city and the fault plane forms here almost vertical dip. The lateral pressures from the two directions have possibly influenced on the formation of the vertical dip at jinty villagy. It should be resulted from that the two pressures responsible for the active reverse fault at which the one with the NW-SE strike thrusts the hanging wall of Tohamsan block southwestward and the other pressure with the N-S strike thrusts it westward over the foot wall of the fan deposits. The marine oxygen isotope stage 8(0.30-0.25 Ma. BP) and stage 6(0.20-0.14 Ma. BP) are presumed to be the ages of high and middle surfaces of the alluvial fan, repectively. The vertical displacements on the high surfaces along the Bulguksa fault system are about 1.05 m at Ha-Dong, 9.5-10.5 m at Jinhyun-Dong, and about 10 m high at Jinty village. And the vertical displacement on the middle surface was measured about 6 m high at Ha-Dong. The average slip rate of vertical displacements is calculated about 0.03-0.43 mm/y.

  • PDF

Case Study of Fault Based on Drainage System Analysis in the Namdae Stream, Uljin Area (울진 남대천 유역의 수계분석을 통한 단층 규명 사례 연구)

  • Han, Jong-Gyu;Choi, Sung-Ja
    • Economic and Environmental Geology
    • /
    • v.44 no.5
    • /
    • pp.399-412
    • /
    • 2011
  • A DEM (digital elevation model) is produced using a digital topographic map and is now a commonly used tool in geologic surveys. This study aimed to clarify the relationship between knickpoints and faults in the Namdae stream by analyzing a DEM of the area. The Namdae drainage basin was divided into three subbasins (S1, S2 and S3) and their knickpoints developed for the middle to mid-upper regions were extracted from the DEM. The relative steepness Ks and concavity depending on the incision rate was higher in S1 than in S2 and S3 regions. We assumed that the incision rate caused by active erosion resulted from several faults crossing the basins rather than differences in rock types. There are 77 knickpoints in the Namdae drainage area, including the low-ranking branch, and 24 of thses are on the main river system (S1, S2, S3). Of these 77 knickpoints, 27 (38%) are matched by faults, and from the three basins, 13 (54%) correspond with faults, indicating that the knickpoints are connected closely with the faults. For example the average Ks (relative steepness), was 38.8, but in the overlapping area of the Samdang and Doocheon faults the Ks value was 42.99~43.39. We suggest that the faults resulted in geomorphic deformation such as the high-Ksn knickpoints. There was little evdence of relationship between the knickpoints and rock boundaries, with 54% of the knickpoints distributed on the S1, S2, and S3 subbasins. We concluded that the drainage basin knickpoints are the result of fault movement and are a type of geomorphologic deformation that could be useful for surveying Quaternary faults or fault extension.

The Active Fault Topography of the Northern Partof the Bulguksa Fault System in Kyungju City, Southeastern Korea (한국 남동부 청주시 불국사단층선 북부의 활단층지형)

  • 윤순옥;황상일
    • Journal of the Korean Geographical Society
    • /
    • v.34 no.3
    • /
    • pp.231-246
    • /
    • 1999
  • The geomorphic deformation of the alluvial fans by tectonic movement was investigated along the lineaments of the northern part of the Bulguksa fault system. Based on the aerial photographs interpretation and field surveys Bulguksa fault system was identified as an active reverse fault which has displaced the Quaternary fan deposits. Bulguksa fault system strikes for the direction of NW-SE and N-S. These two lineaments of active fault are crossing at Jinty village in Kyungju city and the fault plane forms here almost vertical dip. Thelateral pressures from the two directions have possibly influenced on the formation of the vertical dip at Jinty village. It should be resulted from that the two pressures responsible for the active reverse fault at which the one with the NW-SE strike thrusts the hanging wall of Tohamsan block southwestward and the other pressure with the N-S jstrike thrusts it westwrd over the foot wall of the fan deposits. The marine oxygen isotope stage 8(0.30-0.25 Ma. BP) and stage 6(0.20-0.14 Ma. BP) are presumed to be the ages of high and middle surfaces of the alluvial fan, repectively. The vertical dispiacements on the high surface along the Bulguksa fault system are about 10.5m at Ha-dong, 9.5-10.5m at Jinhyun-dong, and about 10m at Jinty village. And the vertical displacement on the middle surface was measured about 6m high at Ha-dong. The average slip rate of vertical displacements is calculated about 0.03-0.043mm/y.

  • PDF

Value of Geologic·Geomorphic Resources of Danyang-gun and Its Application from Geotourism Perspective (단양지역 지질·지형자원의 가치와 지오투어리즘 관점에서의 활용방안)

  • Jeong, Su-Ho;Gwon, Ohsang;Kim, Taehyung;Naik, Sambit Prasanajt;Lee, Jinhyun;Son, Hyorok;Kim, Young-Seog
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.45-69
    • /
    • 2020
  • In Danyang area, various geological structures as well as various lithology and strata are well developed, which are useful for studying paleo-environment and structural movements, and also typical karst landforms, wethering landforms and river landforms. If geologically and geomorphologically valuable resources are used in terms of geotourim perspective, it is expected that revitalization of regional economy through diversification of attracting factors and employment creation of local people. Danyang has many excellent geological resources for geological field trip, they can greatly contribute to the development of geology such as expanding the base of geology and cultivating successive generations. In this study, we have evaluated newly discovered sites and previously excavated resources based on academical and educational values. By using these geological and geomorphological resources, we suggest three geotrail courses as follows. First, Geo-trail A is mainly focused on geological structures (Route A: Jeong Hwan Route), where we can learn geological deformation and movement through various brittle and ductile deformation structures. Second, Geo-trail B is mainly focused on stratigraphic importance (Route B: Soon-Bok Route), which emphasizes on various rocks, strata and contact relationship. Third, Geo-trail C is mainly focused on geomorphological landforms and landscapes (Route C: Satgat Route), which provide information about different geomorphological landforms and the interaction between different geological agents. In order to operate these geotrail courses efficiently, installation of explanation boards and view points, cultivate local commentators, and visitor centers and experience programs should be properly prepared together.