• 제목/요약/키워드: Geometry factor

검색결과 505건 처리시간 0.027초

이산요소법을 이용한 수치해석에서의 상사성 이론의 적용성 검토 (Feasibility Study on Similarity Principle in Discrete Element Analysis)

  • 윤태영;박희문
    • 한국도로학회논문집
    • /
    • 제18권2호
    • /
    • pp.51-60
    • /
    • 2016
  • PURPOSES : The applicability of the mechanics-based similarity concept (suggested by Feng et al.) for determining scaled variables, including length and load, via laboratory-scale tests and discrete element analysis, was evaluated. METHODS: Several studies on the similarity concept were reviewed. The exact scaling approach, a similarity concept described by Feng, was applied in order to determine an analytical solution of a free-falling ball. This solution can be considered one of the simplest conditions for discrete element analysis. RESULTS : The results revealed that 1) the exact scaling approach can be used to determine the scale of variables in laboratory tests and numerical analysis, 2) applying only a scale factor, via the exact scaling approach, is inadequate for the error-free replacement of small particles by large ones during discrete element analysis, 3) the level of continuity of flowable materials such as SCC and cement mortar seems to be an important criterion for evaluating the applicability of the similarity concept, and 4) additional conditions, such as the kinetics of particle, contact model, and geometry, must be taken into consideration to achieve the maximum radius of replacement particles during discrete element analysis. CONCLUSIONS : The concept of similarity is a convenient tool to evaluate the correspondence of scaled laboratory test or numerical analysis to physical condition. However, to achieve excellent correspondence, additional factors, such as the kinetics of particles, contact model, and geometry, must be taken into consideration.

사면의 3차원 안정해석에 관한 연구 (A Study on the Three-Dimensional Stability Analysis of the Slope)

  • 김영수;백영식;서인석
    • 한국지반공학회지:지반
    • /
    • 제7권4호
    • /
    • pp.89-98
    • /
    • 1991
  • This paper presents the three-dimensional stability analysis of the homogeneous, isotropic soil Slopes. Rotational slides are assumed with a cylindroid central part terminated with log-spiral curved ends. The ratio of threeiimensional minimum factor of safety to two 4imensional case is examined and factor of safety changes are showed for the ratio of cylinder length to slope height. On touch babes the following conclusions may be made 1. Factors of safety computed for 3-D geometry differ considerablely from ordir,arty 2-D factor of. safety. Sinoe Fn 1 Fa2 exceeds unity, threeiimensional effects tend to increase the factor of safety. 2. A,B LIU increase, the value of Fb3/ Fs2 decreases. 3. The ratio of Fr/Fs2 appears to be very sensitive to c and values.

  • PDF

Sum of Squares-Based Range Estimation of an Object Using a Single Camera via Scale Factor

  • Kim, Won-Hee;Kim, Cheol-Joong;Eom, Myunghwan;Chwa, Dongkyoung
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2359-2364
    • /
    • 2017
  • This paper proposes a scale factor based range estimation method using a sum of squares (SOS) method. Many previous studies measured distance by using a camera, which usually required two cameras and a long computation time for image processing. To overcome these disadvantages, we propose a range estimation method for an object using a single moving camera. A SOS-based Luenberger observer is proposed to estimate the range on the basis of the Euclidean geometry of the object. By using a scale factor, the proposed method can realize a faster operation speed compared with the previous methods. The validity of the proposed method is verified through simulation results.

분기관 용접부의 크리프 특성 불균일이 응력 재분배에 미치는 영향 (Effect of Creep Mismatch Factor on Stress Redistribution in Welded Branch)

  • 이국희;김윤재;윤기봉
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.293-298
    • /
    • 2008
  • This paper attempts to quantify the effect of mismatch in creep properties on steady-state stress distributions for a welded branch vessel. A particular geometry for the branch vessel is chosen. The vessel is modeled by only two materials, the base and weld metal. Idealized power law creep laws with the same creep exponents are assumed for base and weld metals. A mismatch factor is introduced, as a function of the creep constant and exponent. Steady-state stress distributions within the weld metal, resulting from threedimensional, elastic-creep finite element (FE) analyses, are then characterized by the mismatch factor. We can find that average stresses in the weld can be characterized by the mis-match factor. And there is an analogy between elastic-creep and elastic-perfectly plastic.

  • PDF

Flow Factor Prediction of Centrifugal Hydraulic Turbine for Sea Water Reverse Osmosis (SWRO)

  • Ma, Ying;Kadaj, Eric;Terrasi, Kevin
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권4호
    • /
    • pp.369-378
    • /
    • 2010
  • The creation of the hydraulic turbine flow factor map will undoubtedly benefit its design by decreasing both the design cycle time and product cost. In this paper, the geometry and flow variables, which effectively affect the flow factor, are proposed, analyzed and determined. These flow variables are further used to create the operating condition maps by using different model approaches categorized into Response Surface Method (RSM) and Artificial Neural Network (ANN). The accuracies of models created by different approaches are compared and the performances of model approaches are analyzed. The influences of chosen variables and the combination of Principle Component Analysis (PCA) and model approaches are also studied. The comparison results between predicted and actual flow factors suggest that two-hidden-layer Feed-forward Neural Network (FFNN), and one.hidden-layer FFNN with PCA has the best performance on forming this mapping, and are accurate sufficiently for hydraulic turbine design.

Testing the Geometry of AGN Tori through the Fraction of Optically-Selected Type 1 AGNs

  • Khim, Honggeun;Yi, Sukyoung K.
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.37.2-38
    • /
    • 2015
  • According to the unified model of AGNs, type 1 and 2 AGNs are intrinsically the same objects but seem different due to an obscuring matter which can block lights from the central engine of the AGN depending on the viewing angle. The obscuring object is thought to be shaped in a toroidal form and thus the geometry of tori of AGNs is an important factor to determine the fraction of type 1 (or type 2) AGNs. Oh et al. (2015) provides a new catalog of type 1 AGNs from SDSS DR7 in the nearby universe (z < 0.2) and it contains nearly 50% more type 1 AGNs than previously known. Using this new catalog, we test the fraction of type 1 AGNs along the black hole mass (MBH) and the bolometric luminosity of AGNs (Lbol), which are regarded as key parameters of the AGNs. First of all, because the methods to derive the black hole mass and the bolometric luminosity bear uncertainties, we test how the different methods lead to different values of type 1 fraction. We found that the fraction of type 1 AGNs varies with both MBH and Lbol. The extensively-studied, "receding torus model" can only explain the trend along Lbol and hence fails to explain the trend. To understand the new trend, we test the geometry of the torus based on the "clumpy torus model". We present our results on the basic properties of the torus such as a column density or opening angle and compare with those from previous studies based on other wavelengths (e.g. Infrared or X-ray).

  • PDF

필릿 용접 구조물의 용접 최적화률 위한 실험적 연구 (A Experiment Study for Welding Optimization of fillet Welded Structure)

  • 김일수;나현호;김지선;이지혜
    • 한국정밀공학회지
    • /
    • 제28권9호
    • /
    • pp.1054-1061
    • /
    • 2011
  • GMA welding process is a production process to improve productivity for the provision of higher quality of material, These includs numerous process variables that could affect welding quality, productivity and cost savings. Recently, the welding part of construction equipment had frequent failure of major components in the welding part of each subsidiary material due to shock which is very poor according to the welding part. Therefore, the implementation of sound welding procedure is the most decisive factor for the reliability of construction machinery. The data generated through experimens conducted in this study has validated its effectiveness for the optimization of bead geometry and process variables is presented. The criteria to control the process parameters, to achieve a healthy bead geometry. This study has developed mathematical models and algorithms to predict or control the bead geometry in GMA fillet welding process.

Epipolar 기하학을 이용한 2차원 투영 데이터의 3차원 표현에 관한 연구 (A Study on the 3D Representation of 2D Projection Data using Epipolar Geometry)

  • 유선국;;김남현;김용욱;김희중
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권5호
    • /
    • pp.212-219
    • /
    • 2002
  • In this paper, the epipolar geometry, genera17y used as a pin-hole camera model, is newly adapted to our proposed method that enables the affine reconstruction of the 3D object from two projected views. The proposed method models the projective projection of inherent X-ray imaging system, obviates the need to attach artifirially constructed material on the body, and requires none of the prior-knowledge regarding to intrinsic and extrinsic parameters of two X-ray imaging systems. The optimum numerical solution is obtained by applying the least mean square estimator to corresponding points on two projected X-ray planes. The performance of this proposed method is Quantitatively analyzed using computer synthesized model of Cochlear implantation electrodes. In simulated experiments, the propnsed method is insensitive to the added random noise, the scaling factor change, the center point change, and rotational angular change between two projection planes, as well as enables the stable 3D reconstruction in least square sense even in worst testing cases.

중학교 수학교사의 테크놀로지 통합 자기효능감에 관한 연구 (On secondary mathematics teachers' technology integration self-efficacy)

  • 강순자;장미라
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제55권4호
    • /
    • pp.523-538
    • /
    • 2016
  • The purpose of this study is to explore the secondary mathematics teachers' technology integration self-efficacy with respect to geometry classes which they had experienced during last 1 year, 2015. For this study, we developed and validated the questionnaires based on TPACK framework in secondary geometry context. The questionnaires contained 28 items examining the secondary mathematics teachers' TPACK. We conducted the item analysis with 28 items and then the exploring factor analysis. As a result, 28 items was categorized into 5 constructs, TPCK, TCK, TK, PCK, PK, different from Mishra and Koehler's categorization. We analyzed the secondary mathematics teachers' technology integration self-efficacy with respect to geometry classes based on 5 TPACK constructs. The results indicated that there were no significant differences in technology integration self-efficacy according to gender. But technology integration self-efficacy according to the years of teaching experience differed significantly. The more years of teaching experiences teachers have, the lower level of TPCK and TK they have and the more years of teaching experiences teachers have, the higher level of PCK they have. The results also showed that there ware significant difference in TPCK according to the existence and non-existence of taking the technology courses during the time at university. Furthermore, we provide the implication for the professional preparation program for the mathematics teachers in middle schools.

개인차를 고려한 중학교 기하 교수-학습 방법 개발 (A Study on Teaching Methods of Geometry Based on Individual Differences in Middle School)

  • 권영인;서보억
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제47권2호
    • /
    • pp.113-133
    • /
    • 2008
  • This study is to develop the methods of specifying teaching that can consider individual differences in middle school geometry education. The purpose of this study is to decide the variations causing individual differences and to find the proper learning methods considering the variations. Through literature review, this study made it clear that the matter of individual difference is just the matter of talent and examined what factors make up mathematical talents. On the basis of the result, five important variations and fourteen subordinate factors were determined. I researched into the learning methods that consider the determined subordinate factors using the 'congruence' unit of middle school textbooks and developed specific learning methods for each of the subordinate factors through specific congruence problem solving situations. This study can be summarized as follows : I researched the studies of mathematical ability conducted by several educators and psychologists. This research is divided into the early study and the developed study of mathematical ability. Through this study five specific variations were determined. And fourteen subordinate factors have been made from the determined variations. The specific learning methods based on individual differences was developed according to the fourteen subordinate factors on the basis of middle school textbooks of Korea, Gusev's textbook, problem books of Russia, and etc.

  • PDF