• 제목/요약/키워드: Geometry effect

검색결과 1,388건 처리시간 0.033초

GMA 용접의 비드형상 추론 알고리즘 개발 (Development of Inference Algorithm for Bead Geometry in GMAW)

  • 김면희;배준영;이상룡
    • 한국정밀공학회지
    • /
    • 제19권4호
    • /
    • pp.132-139
    • /
    • 2002
  • In GMAW(Gas Metal Arc Welding) processes, bead geometry (penetration, bead width and height) is a criterion to estimate welding quality. Bead geometry is affected by welding current, arc voltage and travel speed, shielding gas, CTWD (contact-tip to workpiece distance) and so on. In this paper, welding process variables were selected as welding current, arc voltage and travel speed. And bead geometry was reasoned from the chosen welding process variables using neuro-fuzzy algorithm. Neural networks was applied to design FL(fuzzy logic). The parameters of input membership functions and those of consequence functions in FL were tuned through the method of learning by backpropagation algorithm. Bead geometry could be reasoned from welding current, arc voltage, travel speed on FL using the results learned by neural networks. On the developed inference system of bead geometry using neuro-furzy algorithm, the inference error percent of bead width was within $\pm$4%, that of bead height was within $\pm$3%, and that of penetration was within $\pm$8%. Neural networks came into effect to find the parameters of input membership functions and those of consequence in FL. Therefore the inference system of welding quality expects to be developed through proposed algorithm.

실제 형상을 통한 복부대동맥의 혈류 유동에 대한 수치적 연구 (Numerical Study on the Blood Flow in the Abdominal Artery with Real Geometry)

  • 강한영;김민철;홍이송;이종선;이종민;김찬중
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.747-752
    • /
    • 2003
  • Many clinical studies have suggested that the blood flow in ideal geometry is involved in the development of atherosclerosis. This study simulated blood flow in the abdominal artery with real geometry to investigate MWSS(mean wall shear stress), AWSS(amplitude of wall shear stress) and OSI(oscillator shear index). The calculation grid for the real geometry was constructed by extracting the surface of arterial wall from CT(Computed Tomography) or MRI(Magnetic Resonance Imaging) sheets called as DICOM (Digital Imaging and Communications in Medicines). The calculated MWSS, AWSS and OSI are much different from those of ideal geometry calculation. The MWSS increased while the AWSS decreased. Many shear forces are related to shapes of gradient. This paper will give clinical datum where the MWSS, AWSS and OSI are strong or weak. The hemodynamic analysis based on real geometry can provide surgeons with more reliable information about the effect of blood flow.

  • PDF

재생 PET 섬유의 형상 및 길이가 시멘트 복합 재료의 소성 수축 균열에 미치는 영향 (Effect of Recycled PET Fiber Geometry and Length on the Plastic Shrinkage Cracking of Cement Based Composites)

  • 원종필;박찬기;김황희;이상우
    • 콘크리트학회논문집
    • /
    • 제19권2호
    • /
    • pp.233-239
    • /
    • 2007
  • 본 연구의 주요 목적은 시멘트 복합 재료의 소성 수축 균열 제어에 폐 PET병으로부터 만들어진 재생 PET 섬유의 효과를 평가하는 것이다. PET은 플라스틱 재료라 알려진 재료로 음료수 병 등에 다양하게 적용되어 왔다. 그렇지만 폐 PET 병은 사용 후에 환경적 측면에서 큰 문제점으로 부각되고 있다. 따라서 폐 PET 병을 재활용하는 방법에 대한 연구는 환경 및 경제적 측면에서 중요하게 되었다. 폐 PET 병을 재활용하는 방법 중 시멘트 복합 재료의 보강 섬유로 사용하는 방법은 효과적인 방법 중에 하나이다. 본 연구에서는 시멘트 복합 재료의 소성 수축 균열에 재생 PET 섬유의 형상 및 길이의 효과를 얇은 슬래브 실험을 통해서 조사하였다. 실험 계획은 섬유의 형상, 길이 및 혼입률의 영향을 이해하기 위하여 수행하였다. 재생 PET섬유의 형상은 straight, crimped및 embossed type의 3가지 형상을 포함하며, 각 3가지 섬유형상 마다 3가지 수준의 섬유 혼입률 및 2가지 종류의 섬유 길이에 대해서 조사하였다. 실험 결과 재생 PET섬유는 시멘트 복합 재료의 소성 수축 균열에 효과적이었다. 섬유의 길이의 관점에서 길이가 긴 섬유는 섬유의 형상이 동일할 때 섬유체적비가 적을 때 효과적이며, 섬유체적비가 증가하면 길이가 짧은 섬유가 더욱더 효과적이었다. 또한 embossed type의 섬유는 적은 섬유 혼입률에서 다른 형상의 섬유보다 소성 수축 균열 제어 효과가 우수하였으며, 높은 섬유 혼입률에서는 straight type의 섬유가 다른 형상의 섬유보다 시멘트 복합 재료의 소성 수축 균열 제어에 가장 효과적이었다.

The Effects of Injector Nozzle Geometry and Operating Pressure Conditions on the Transient Fuel Spray Behavior

  • Koo, Ja-Ye
    • Journal of Mechanical Science and Technology
    • /
    • 제17권4호
    • /
    • pp.617-625
    • /
    • 2003
  • Effects of Injector nozzle geometry and operating pressure conditions such as opening pressure, ambient pressure. and injection pressure on the transient fuel spray behavior have been examined by experiments. In order to clarify the effect of internal flow inside nozzle on the external spray, flow details Inside model nozzle and real nozzle were alto investigated both experimentally and numerically. for the effect of injection pressures, droplet sizes and velocities were obtained at maximum line pressure of 21 MPa and 105 MPa. Droplet sizes produced from the round inlet nozzle were larger than those from the sharp inlet nozzle and the spray angle of the round inlet nozzle was narrower than that from the sharp inlet nozzle. With the increase of opening pressure, spray tip penetration and spray angle were increased at both lower ambient pressure and higher ambient pressure. The velocity and size profiles maintained similarity despite of the substantial change in injection pressure, however, the increased injection pressure produced a higher percentage of droplet that are likely to breakup.

고속주축용 비접촉 시일의 형상설계 연구 (Design Characteristics of Non-Contact Type Seal for High Speed Spindle)

  • 나병철;전경진;한동철
    • 한국정밀공학회지
    • /
    • 제14권4호
    • /
    • pp.56-63
    • /
    • 1997
  • Sealing of lubricant-air mixture in the high performance machining center is one of most the important characteristics to carry out enhanced lubrication. High speed spindle requires non-contact type of sealing mechanism. Evaluating an optimum seal design to minimize leakage is concerned in the aspect of flow control. Effect of geometry and leakage path are evaluated according to variation of sealing geometry. Velocity, pressure, turbulence intensity of profile is calculated to find more efficient geometry and variables. This offers a methodological way of enhancement seal design for high speed spindle. The working fluid is regarded as two phases that are mixed flow of oil phase and air phase. It is more reasonable to simulate an oil jet or oil mist type high speed spindle lubrication. Turbulence and compressible flow model are used to evaluate a flow characteristic. This paper considers a design effect of sealing capability of non- contact type seals for high speed spindle and analyzes leakage characteristics to minimize a leakage 7 on the same sealing area.

  • PDF

속도 제한에 의한 충격량 도형에 관한 연구 (An analysis on the robotic impact geometry with task velocity constraint)

  • 이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제5권8호
    • /
    • pp.955-960
    • /
    • 1999
  • This paper describes the effect of impact configurations on a single robot manipulator. The effect of different configurations of kinematically redundant arms on impact forces at their end effectors during contact with the environment is investigated. Instead of the well-known impact ellipsoid, I propose an analytic method on the geometric configuration of the impact directly from the mathematical definition. By calculating the length along the specified motion direction and volume of the geometry, we can determine the characteristics of robot configurations in terms of both the impact along the specified direction and the ability of the robot withstanding the impact. Simulations of various impact configurations are discussed at the end of this paper.

  • PDF

Transient Response of Head Slider with the Head Geometry Change in Magnetic Storage Devices

  • Mongkolwongrojn, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.906-909
    • /
    • 2005
  • In this study, the dynamic flying characteristics of the worn head sliders are investigated theoretically due to the change in head geometry caused by head and disk contact. The film shapes can be approximated as taper- truncated cycloidal-flat film. Two-dimensional time dependent modified Reynolds equation included molecular slip effect are formulated with neglected the roughness effect. The motion of head slider was assumed to have two degree of freedom in this work. Finite difference approximation with Newton Raphson iterative technique and the fourth order Runge-Kutta method were implemented to obtain the transient response of the slider head with various change in head geometry numerically and compared with the transient response of the IBM3380 type head slider. The simulation results show the film shape has affects significantly on the static and dynamic characteristic of slider head in magnetic storage systems.

  • PDF

건물의 기하학적 형태를 고려한 TRNSYS 모델링 방법 (Modeling Method of the TRNSYS Considering of a Building Geometry)

  • 이재혁;최원기;서승직
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.21-26
    • /
    • 2009
  • TRNSYS 16 had just a wall area and azimuth as an input value about a building shape. So, a geometrical shape of a building was not considered in simulation using TRNSYS 16. In this study, we suggested the more appropriate modeling method for simulation considering of building geometry in TRNSYS 16. To suggest this method, we simulated energy needs affected by shading effect that caused by a geometrical shape of a building, and compared the result to the simulation result of non-shading environment.

  • PDF

레이저 성형에서 시편의 기하학적 형상에 따른 변형의 양상에 관한 연구 (Effect of Specimen Geometry on deformation in laser forming of sheet metal)

  • ;성우제;나석주
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.22-22
    • /
    • 2009
  • Laser forming is a promising technology in manufacturing, such as in the shipbuilding, automobile, microelectronics, aerospace and other manufacturing industries. This process forms the sheet metal by utilization of laser-induced thermal stresses. Laser forming process has been studied extensively for rectangular shape geometry. This basic study presents the change in deformation behavior of sheet metal during transition from linear to curved geometries and irradiations as well. A series of experiments have been conducted on a wide range of specimen geometries such as quarter-circular and half circular plate. The reasons for this behavior have been analyzed. Results are compared and analyzed by simulations using ABAQUS. Influence of developed stresses on the bending has been investigated. This study provides the more understanding of forming mechanism influenced by geometry effect.

  • PDF

다구찌 방법을 통한 볼 엔드밀 절삭날 형상이 가공면 거칠기에 미치는 영향 분석 (Analysis of Cutting Edge Geometry Effect on Surface Roughness in Ball-end Milling Using the Taguchi Method)

  • 조철용;류시형
    • 한국생산제조학회지
    • /
    • 제23권6호
    • /
    • pp.569-575
    • /
    • 2014
  • In this study, the effect of cutting edge geometry, such as helix and rake angles, on surface roughness in ball-end milling is investigated by using the Taguchi method. A set of experiments adopting the $L_{27}(3^{13})$ design with an orthogonal array are conducted with special WC ball-end mills having different helix and rake angles. Analysis of variance (ANOVA) is performed to analyze the effects of tool geometry and machining parameters, such as cutting speed, feed per tooth, and depth of cut, on surface roughness. The ANOVA results reveal that helix and rake angles are critical factors affecting surface roughness; the interaction of helix angle and cutting speed is also important. This research can contribute to novel cutting edge designs of ball-end mills and optimization of cutting parameters.