• Title/Summary/Keyword: Geometry

Search Result 8,359, Processing Time 0.041 seconds

Geometrical Analysis on Parts of Load Limit Valve for Static Structural Test of Aerospace Flight Vehicles (항공우주 비행체 정적구조시험용 하중제한밸브 부품 형상 분석)

  • Shim, Jae-Yeul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.607-616
    • /
    • 2019
  • Free body diagram analysis is done for key parts of pilot stage of LLV (Load Limit Valve) which is used to protect overload for static structural test of aerospace flight vehicle. It is shown through the analysis that diameter ratio($D_2)^{ten}/D_2)^{comp}$) of two poppets in a pilot stage must be equal to piston area ratio($A_{comp}/A_{ten}$) of a hydraulic actuator for making a poppet open consistently at constant force applied by an actuator. The result of the analysis is verified by measuring geometries of the poppets in the four different LLVs which are corresponding to four actuators with different capacity and have been used after being imported in this laboratory. Results of "Adjuster resolution tests" with two different pilot stages show the max. deviation of Fi(actuator force in instant of opening poppet) from average Fi obtained for each turn of adjuster is 0.3KN and max. deviation of the Fi normalized by average Fi of each turn of adjuster is 3.7%. From the results, it is verified that the two pilot stages with same poppet diameter ratio make a poppet consistently open at Fis within ${\pm}3.7%$ deviation from the average Fi. The deviation is shown to be caused from frictional force of O-ring in the poppet. Additionally, design factors for poppet spring and adjuster, which are also key parts of the pilot stage, are distinguished and procedure for deciding the factors are also shown in this study.

Optimal Gas Detection System in Cargo Compressor Room of Gas Fueled LNG Carrier (가스추진 LNG 운반선의 가스 압축기실에 설치된 가스검출장치의 최적 배치에 관한 연구)

  • Lee, Sang-Won;Shao, Yude;Lee, Seung-Hun;Lee, Jin-Uk;Jeong, Eun-Seok;Kang, Ho-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.617-626
    • /
    • 2019
  • This study analyzes the optimal location of gas detectors through the gas dispersion in a cargo compressor room of a 174K LNG carrier equipped with high-pressure cargo handling equipment; in addition, we propose a reasonable method for determining the safety regulations specified in the new International Code of the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC). To conduct an LNG gas dispersion simulation in the cargo compressor room-equipped with an ME-GI engine-of a 174 K LNG carrier, the geometry of the room as well as the equipment and piping, are designed using the same 3D size at a 1-to-1 scale. Scenarios for a gas leak were examined under high pressure of 305 bar and low pressure of 1 bar. The pinhole sizes for high pressure are 4.5, 5.0, and 5.6mm, and for low pressure are 100 and 140 mm. The results demonstrate that the cargo compressor room will not pose a serious risk with respect to the flammable gas concentration as verified by a ventilation assessment for a 5.6 mm pinhole for a high-pressure leak under gas rupture conditions, and a low-pressure leak of 100 and 140 mm with different pinhole sizes. However, it was confirmed that the actual location of the gas detection sensors in a cargo compressor room, according to the new IGC code, should be moved to other points, and an analysis of the virtual monitor points through a computational fluid dynamics (CFD) simulation.

A Study for Comparison of Geometric Characteristics on Forearms for Improvement of Convinience in Splint Manufacturing with 3D Printing Technology (3D 프린팅 기술을 적용한 스플린트의 제작 용이성 향상을 위한 아래팔 기하 정보 비교에 관한 연구)

  • Chang, Ji Hong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.5
    • /
    • pp.475-481
    • /
    • 2019
  • A splint is one of assisting devices for the disabled with hemiplegia or contracture and is manually made by an experienced expert. Heated thermoplastic materials are continuously fitted to the affected part. This traditional method has a possible risk of low-temperature burn, quality variance of the splint due to the proficiency of maker. etc. While various approaches has been made using 3D printing technology in order to redeem those disadvantages, they still carry high cost issues with 3D scanners or accuracy issues with manual measurement. This research begins with symmetrical characteristics of human body and focuses on the preliminary study for the possibility of splint manufacturing with 3D printing technology based on geometric characteristics of unaffected arm. 3D right and left forearm models of healthy male adults were created by photogrammetry software and a series of digital images in order to measure the circumference and cross-sectional area of the forearm models at every 20mm from the elbow. The circumference and cross-sectional area showed tolerable levels of differences between both sides within subjects; The circumference and cross-sectional area showed very strong correlations between both sides within subjects. From these findings, the possibility of splint manufacturing with 3D printing technology could be confirmed based on the geometric characteristics of unaffected side.

Low Cycle Fatigue Life Behavior of GFRP Coated Aluminum Plates According to Layup Number (적층수에 따른 GFRP 피막 Al 평활재의 저주기 피로수명 평가)

  • Myung, Nohjun;Seo, Jihye;Lee, Eunkyun;Choi, Nak-Sam
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.332-339
    • /
    • 2018
  • Fiber metal hybrid laminate (FML) can be used as an economic material with superior mechanical properties and light weight than conventional metal by bonding of metal and FRP. However, there are disadvantages that it is difficult to predict fracture behavior because of the large difference in properties depending on the type of fiber and lamination conditions. In this paper, we study the failure behavior of hybrid materials with laminated glass fiber reinforced plastics (GFRP, GEP118, woven type) in Al6061-T6 alloy. The Al alloys were coated with GFRP 1, 3, and 5 layers, and fracture behavior was analyzed by using a static test and a low cycle fatigue test. In the low cycle fatigue test, strain - life analysis and the total strain energy density method were used to analyze and predict the fatigue life. The Al alloy did not have tensile properties strengthening effect due to the GFRP coating. The fatigue hysteresis geometry followed the behavior of the Al alloy, the base material, regardless of the GFRP coating and number of coatings. As a result of the low cycle fatigue test, the fatigue strength was increased by the coating of GFRP, but it did not increase proportionally with the number of GFRP layers.

The opening efficiency of the miniaturized small-scale net for anchovy boat seine to reduce the fleet size (선단축소를 위한 기선권현망 축소형 소형어구의 전개성능)

  • AN, Young-Su;BACK, Young-su;JIN, Song-han;JANG, Choong-Sik;KANG, Myoung-hee;CHA, Bong-jin;CHO, Youn-hyoung;CHA, Ju-hyeng;KIM, Bo-Yeon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.1
    • /
    • pp.7-19
    • /
    • 2019
  • This study was conducted in order to improve opening efficiency of the miniaturized small-scale net for anchovy boat seine gear to reduce the fleet size. Field experiment was performed to observe geometry of nets by catcher boats. When the distance between the two ships was 150, 300 and 450 m and the speed of towing nets was 0.6, 0.9, and 1.2 kt, the vertical opening and actual opening of each part of the miniaturized small-scale net was as follows: the front part of the wing net, 6.8-9.5 m, 45-63%; the middle part of the wing net, 16.1-30.7 m, 34-65%; the entrance of the inside wing net, 21.6-41.2 m, 44-84%; the square and bosom, 17.4-34.0 m, 38-75%; the entrance of the body net, 16.5-29.4 m, 36-64%; the entrance of the bag net, 14.5-21.9 m, 70-106%; the flapper, 6.7-7.7 m, 81-83%, and the end of the bag net, 8.6-10.9 m, 64-81%. The tension of towing nets was measured to be 2,734-6,812 kg approximately, which indicates that the fleet can tow nets with 350 hp, the standard engine horse power. The fishing operation time was shortened comparing to existent net with the large-scale buoy attachment operation. It was also possible to operate the ship without fish detecting boat.

Geometric Effects of Compartment Opening on Fuel-Air Mixing and Backdraft Behavior (개구부의 기하학적 형상이 구획실의 연료-공기 혼합특성 및 백드래프트 거동에 미치는 영향)

  • Ha, Suim;Oh, Chang Bo
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.30-38
    • /
    • 2019
  • Mixing characteristics and backdraft dynamics were investigated using large eddy simulation for compartments initially filled with methane fuel. Four different opening geometries, i.e. conventional door opening case (Door) and the cases where horizontal door was implemented on the upper ($Slot_U$), middle ($Slot_M$) and lower part ($Slot_L$) of side wall, were considered in the simulations. For cases without ignition, the amounts of inflow oxygen and outflow fuel from the compartment opening were, from largest to smallest, Door > $Slot_U$ ~ $Slot_M$ > $Slot_L$. However, the fuel and oxygen were the best mixed for the $Slot_U$ case while the fuel and oxygen were not well mixed and in relatively separated two layers for the $Slot_L$ case. The global equivalence ratio defined by the amounts of fuel and oxygen in the compartment was not correlated reasonably with the peak pressure of backdraft. The peak pressure during backdraft was the highest for the $Slot_U$ case, a well mixed condition of fuel and air, and backdraft was not found for the $Slot_L$ where the pressure rise was not so high due to the mixing status. The peak pressures for the Door and $Slot_M$ cases were in between Door and $Slot_L$ cases. The peak pressure during backdraft was well correlated with the total amount of heat release until the instance of backdraft occurrence.

On a Representation of an Arbitrary Point on a Figure Focused on a Translated Figure (도형 위의 임의의 점의 표현에 대한 연구 -평행이동 된 도형을 중심으로-)

  • Lee, Min Jung
    • Communications of Mathematical Education
    • /
    • v.33 no.2
    • /
    • pp.105-122
    • /
    • 2019
  • In Korean textbooks, by T(x,y) = (x+a, y+b) where a and b are horizontal and vertical changes respectively, an arbitrary point on the original figure f(x, y) = 0 has been expressed as a point (x, y) and a point on a translated figure f(x-a, y-b) = 0 has been expressed as a point (x', y'). If an arbitrary point on a figure f(x, y) = 0 is expressed as a point (x, y), then a point (x, y) and a figure f(x, y) = 0 are different targets but the same characters are used. In this following study, there were found that the expressions in these textbooks were stuck for more than 50 years, so students' thoughts were stiff. And therefore these are a need to be improved so that those things are studied as follows. First, inducing a formula, what are the students' responses like when were expressed differently from textbooks? Second, based on the results reviewed, how will the expressions of the textbook be revised? Third, how do the students respond to the modified expressions? As the result, a point on the original figure were expressed differently from textbooks and a point on a translated figure was put as a point (x, y), and about it, all of the students surveyed said that this improved expressions made in the study were easier.

Optimum Geometry of Glass Lined HOMEBASE Impeller for Gas-Liquid System of Low Viscosity Liquid (저점도 액 통기 교반용 글라스라이닝 홈베이스 임펠러의 최적 형상)

  • Koh, Seung-Tae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.542-547
    • /
    • 2021
  • Glass lined impellers are corrosion resistant to most chemicals, including strong acids, and also have a smooth, non-stick surface, easy to clean and free from impurities in the process. Glass lined home base impeller is a multi-purpose impeller designed to stir a wide viscosity range of liquids from low viscosity fluids to high viscosity fluids, among others, cell culture, yeast culture, and beer fermentation pots, especially used for air-water system breathable stirring. The glass lining for HB impellers, which are simple in structure and competitive in performance, is essential to have upper and lower division in order to make the joint area between the impeller and shaft as small as possible. The upper and lower division of the impeller hardly affects the mixing performance, but the aeration performance. In this study, in order to optimize the shape of the Glass Lining HB impeller, a study was conducted on the effect of the angle between the upper and lower impellers, the clearance between the impellers, and the number of baffles on the aeration power. The optimal shape and baffle plate conditions for the Glass lined HB impeller were derived through the study results that the angle and the clearance between the upper and lower impellers decreased the ration of the power consumption with aeration Pg and that without aeration P0, Pg/P0.

Construction of a Bark Dataset for Automatic Tree Identification and Developing a Convolutional Neural Network-based Tree Species Identification Model (수목 동정을 위한 수피 분류 데이터셋 구축과 합성곱 신경망 기반 53개 수종의 동정 모델 개발)

  • Kim, Tae Kyung;Baek, Gyu Heon;Kim, Hyun Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.2
    • /
    • pp.155-164
    • /
    • 2021
  • Many studies have been conducted on developing automatic plant identification algorithms using machine learning to various plant features, such as leaves and flowers. Unlike other plant characteristics, barks show only little change regardless of the season and are maintained for a long period. Nevertheless, barks show a complex shape with a large variation depending on the environment, and there are insufficient materials that can be utilized to train algorithms. Here, in addition to the previously published bark image dataset, BarkNet v.1.0, images of barks were collected, and a dataset consisting of 53 tree species that can be easily observed in Korea was presented. A convolutional neural network (CNN) was trained and tested on the dataset, and the factors that interfere with the model's performance were identified. For CNN architecture, VGG-16 and 19 were utilized. As a result, VGG-16 achieved 90.41% and VGG-19 achieved 92.62% accuracy. When tested on new tree images that do not exist in the original dataset but belong to the same genus or family, it was confirmed that more than 80% of cases were successfully identified as the same genus or family. Meanwhile, it was found that the model tended to misclassify when there were distracting features in the image, including leaves, mosses, and knots. In these cases, we propose that random cropping and classification by majority votes are valid for improving possible errors in training and inferences.

Analysis on Mapping Accuracy of a Drone Composite Sensor: Focusing on Pre-calibration According to the Circumstances of Data Acquisition Area (드론 탑재 복합센서의 매핑 정확도 분석: 데이터 취득 환경에 따른 사전 캘리브레이션 여부를 중심으로)

  • Jeon, Ilseo;Ham, Sangwoo;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.577-589
    • /
    • 2021
  • Drone mapping systems can be applied to many fields such as disaster damage investigation, environmental monitoring, and construction process monitoring. To integrate individual sensors attached to a drone, it was essential to undergo complicated procedures including time synchronization. Recently, a variety of composite sensors are released which consist of visual sensors and GPS/INS. Composite sensors integrate multi-sensory data internally, and they provide geotagged image files to users. Therefore, to use composite sensors in drone mapping systems, mapping accuracies from composite sensors should be examined. In this study, we analyzed the mapping accuracies of a composite sensor, focusing on the data acquisition area and pre-calibration effect. In the first experiment, we analyzed how mapping accuracy varies with the number of ground control points. When 2 GCPs were used for mapping, the total RMSE has been reduced by 40 cm from more than 1 m to about 60 cm. In the second experiment, we assessed mapping accuracies based on whether pre-calibration is conducted or not. Using a few ground control points showed the pre-calibration does not affect mapping accuracies. The formation of weak geometry of the image sequences has resulted that pre-calibration can be essential to decrease possible mapping errors. In the absence of ground control points, pre-calibration also can improve mapping errors. Based on this study, we expect future drone mapping systems using composite sensors will contribute to streamlining a survey and calibration process depending on the data acquisition circumstances.