• Title/Summary/Keyword: Geometrical ray

Search Result 103, Processing Time 0.024 seconds

New mathematical approach to calculate the geometrical efficiency using different radioactive sources with gamma-ray cylindrical shape detectors

  • Thabet, Abouzeid A.;Hamzawy, A.;Badawi, Mohamed S.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1271-1276
    • /
    • 2020
  • The geometrical efficiency of a source-to-detector configuration is considered to be necessary in the calculation of the full energy peak efficiency, especially for NaI(Tl) and HPGe gamma-ray spectroscopy detectors. The geometrical efficiency depends on the solid angle subtended by the radioactive sources and the detector surfaces. The present work is basically concerned to establish a new mathematical approach for calculating the solid angle and geometrical efficiency, based on conversion of the geometrical solid angle of a non-axial radioactive point source with respect to a circular surface of the detector to a new equivalent geometry. The equivalent geometry consists of an axial radioactive point source with respect to an arbitrary elliptical surface that lies between the radioactive point source and the circular surface of the detector. This expression was extended to include coaxial radioactive circular disk source. The results were compared with a number of published data to explain how significant this work is in the efficiency calibration procedure for the γ-ray detection systems, especially in case of using isotropic radiating γ-ray sources in the form of point and disk shapes.

Analysis of Sun Tracking Error Caused by the Heliostat Driving Axis Geometrical Error Utilizing the Solar Ray Tracing Technique (태양광선 제적추적기법을 이용한 Heliostat 구동축 기구오차에서 기인하는 태양추적오차의 분석)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.39-46
    • /
    • 2009
  • Heliostat, as a mirror system tracking the sun's movement, is the most important subsystem determining the efficiency of solar thermal power plant. Thus the accurate sun tracking performance under the various hazardous operating condition, is required. This study presents a methodology of development of the solar ray tracing technique and the application of it in the analysis of sun tracking error due to the heliostat geometrical errors. The geometrical errors considered here are the azimuth axis tilting error and the elevation axis tilting error. We first analyze the geometry of solar ray reflected from the heliostat. Then the point on the receiver, where the solar ray reflected from the heliostat is landed, is computed and compared with the original intended point, which represents the sun tracking error. The result obtained shows that the effect of geometrical error on the sun tracking performance is varying with time(season) and the heliostat location. It also shows that the heliostat located near the solar tower has larger sun tracking error than that of the heliostat located farther.

Prediction of Electromagnetic Wave Propagation in Space Environments Based on Geometrical Optics

  • Kim, Changseong;Park, Yong Bae
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.165-167
    • /
    • 2017
  • We predict the electromagnetic wave propagation in space environments using geometrical optics. The effective indices of the troposphere, stratosphere, and ionosphere are computed, and the reflection, refraction, and attenuation of electromagnetic waves in space environments are calculated based on the ray tracing technique and geometrical optics. The influence of the refractive index and loss of atmosphere and the incident angle of the antenna on electromagnetic wave propagation is discussed.

Region-wise evaluation of gamma-ray exposure dose in decontamination operation after a nuclear accident

  • Jeong, Hae Sun;Hwang, Won Tae;Han, Moon Hee;Kim, Eun Han;Lee, Jo Eun;Lee, Cheol Woo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2652-2660
    • /
    • 2021
  • The gamma-ray exposure doses in decontamination operation after a nuclear accident were evaluated with a consideration of various geometrical conditions and specific gamma-ray energies. The calculation domain is organized with three residence types and each form is divided into two kinds of geometrical arrangements. The position-wise air KERMA values were calculated with an assumption of evenly distributed gamma-ray source based on Monte Carlo radiation transport analysis using the MCNP code. The radioactivity is initially set to be unity to be multiplied by the deposition value measured in the actual accident condition. The workforce data set depending on the target object was determined by modifying the Fukushima report. The external exposure doses for decontamination workers were derived from the calculated KERMA values and the workforce analysis. These results can be used to efficiently determine the workforce required by the characteristics of the area and the structure to be decontaminated within the dose limits.

Prediction of Antenna Propagation Characteristic in Space Environment Using Ray Tracing Method (광선 추적법을 이용한 우주 환경에서의 안테나 전파 특성 예측)

  • Kim, ChangSeong;Park, Yong Bae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.11
    • /
    • pp.1023-1026
    • /
    • 2016
  • We calculate the propagation characteristic of antennas considering refractive indices of space environments. The effective indices of troposphere, stratosphere, and inonshpere are computed and the ray tracing method, geometrical optics, and Huygens' principle are used to estimate refracted and attenuated electromagnetic wave of space environment.

A fast gamma-ray dose rate assessment method for complex geometries based on stylized model reconstruction

  • Yang, Li-qun;Liu, Yong-kuo;Peng, Min-jun;Li, Meng-kun;Chao, Nan
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1436-1443
    • /
    • 2019
  • A fast gamma-ray dose rate assessment method for complex geometries based on stylized model reconstruction and point-kernel method is proposed in this paper. The complex three-dimensional (3D) geometries are imported as a 3DS format file from 3dsMax software with material and radiometric attributes. Based on 3D stylized model reconstruction of solid mesh, the 3D-geometrical solids are automatically converted into stylized models. In point-kernel calculation, the stylized source models are divided into point kernels and the mean free paths (mfp) are calculated by the intersections between shield stylized models and tracing ray. Compared with MCNP, the proposed method can implement complex 3D geometries visually, and the dose rate calculation is accurate and fast.

Ambisonic Rendering for Diffuse Sound Field Simulations based on Geometrical Acoustics (기하음향 기반 확산 음장 시뮬레이션을 위한 앰비소닉 렌더링 기법)

  • Pilsun Eu;Franz Zotter;Jae-hyoun Yoo;Jung-Woo Choi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.26-29
    • /
    • 2022
  • The diffuse sound field plays a crucial role in the perceptual quality of the auralization of virtual scenes. Diffuse Rain is a geometrical scattering model which enables the simulation of diffuse fields that is compatible with acoustic ray tracing, but is often computationally expensive. We develop a novel method that can reduce this cost by rendering the large number of Diffuse Rain data in Ambisonics format. The proposed method is evaluated in a shoebox scene simulation run on MATLAB, in reference to a more faithful method of rendering the Diffuse Rain data ray-by-ray. The EDC and IACC of the binaural output show that the simulated diffuse field can be rendered in Ambisonics with only minimal deviations in energy decay and spatial quality, even with 1st-order Ambisonics.

  • PDF

Acceleration analysis by using line geometry and its application to dynamics (선 기하를 이용한 가속도 해석과 동역학에의 적용)

  • 홍만복;최용제
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.912-915
    • /
    • 2002
  • It has been known that general velocity and force of a rigid body in space can be described in forms of a twist and a wrench by use of screws. However, the geometrical meaning of acceleration has not been clearly disclosed. It has been a normal practice to analyze or synthesize the acceleration effect of manipulator using some complex mathematical equations, which do not represent any geometrical meanings. In other words, such a technique doesn't clearly provide information about the overall acceleration state of manipulator at that instant. In this study, the geometrical meaning of acceleration of a rigid body has been investigated and thereby a geometrical procedure which can be applied to inverse acceleration analysis of a general non-redundant manipulator is presented as an application.

  • PDF

Analysis of Heliostat Sun Tracking Error due to the Mirror Installation and Drive Mechanism Induced Errors (Heliostat 반사거울 설치 및 구동기구 유발 오차에 의한 태양추적오차의 해석)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.3
    • /
    • pp.1-11
    • /
    • 2009
  • Heliostat sun tracking accuracy could be the most important requirement in solar thermal power plant, since it determines the overall efficiency of power plant. This study presents the effect of geometrical errors on the heliostat sun tracking performance. The geometrical errors considered here are the mirror canting error, encoder reference error, heliostat position error. pivot offset and tilt error, gear backlash and mass unbalanced effect error. We first investigate the effect of each individual geometrical error on the sun tracking accuracy. Then, the sun tracking error caused by the combination of individual geometrical error is computed and analyzed. The results obtained using the solar ray tracing technique shows that the sun tracking error due to the geometrical error is varying almost randomly. It also shows that the mirror canting error is the most significant error source, while the encoder reference error and gear backlash are second and the third dominant source of errors.

A ray-based approach to scattering from inhomogeneous dielectric objects (전파경로 투적에 의한 비균질 유전체의 전자파 산란)

  • Kim, Hyeongdong
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.2
    • /
    • pp.31-37
    • /
    • 1995
  • A ray-based approach is developed to calculate the scattering from inhomogeneous dielectric objects. This approach is a natural extension of the "shooting and bouncing ray(SBR)" technique developed earlier for calculating the radar cross section of cavity structures and complex targets. In this formulation, a dense grid of rays representing the incident field is shot toward the scatterer. The curved trajectory, amplitude, phase and polarization of the ray fields inside the inhomogeneous object are computed numerically based on the laws of geometrical optics. The contributions of the exting rays to the exterior scattered field are then calculated by using the equivalence principle in conjunction with " a ray-tube integration" scheme. The ray-based approach is applied for the effect of an arcjet plasma plume on satellite reflector performance and backscattering from inhomogeneous objects.

  • PDF