• Title/Summary/Keyword: Geometrical error

Search Result 189, Processing Time 0.026 seconds

Enhanced Reconstruction of Heavy Occluded Objects Using Estimation of Variance in Volumetric Integral Imaging (VII) (Volumetric 집적영상에서 분산 추정을 이용한 심하게 은폐된 물체의 향상된 복원)

  • Hwang, Yong-Seok;Kim, Eun-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.6
    • /
    • pp.389-393
    • /
    • 2008
  • Enhanced reconstruction of heavy occluded objects was represented using estimation of variance in computational integral imaging. The system is analyzed to extract information of enhanced reconstruction from an elemental images set. To obtain elemental images with enhanced resolution, low focus error, and large depth of focus, synthetic aperture integral imaging (SAII) utilizing a digital camera has been adopted. The focused areas of the reconstructed image are varied with the distance of the reconstruction plane. When an occluded object is occluded heavily, an occluded object can not be reconstructed by removing the occluding object. To obtain reconstruction of the occluded object by remedying the effect of heavy occlusion, the statistical technique has been adopted.

Analysis of Shaping Parameters Influencing on Dimensional Accuracy in Single Point Incremental Sheet Metal Forming (음각 점진성형에서 치수정밀도에 영향을 미치는 형상 파라미터 분석)

  • Kang, Jae Gwan;Kang, Han Soo;Jung, Jong-Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.4
    • /
    • pp.90-96
    • /
    • 2016
  • Incremental sheet forming (ISF) is a highly versatile and flexible process for rapid manufacturing of complex sheet metal parts. Compared to conventional sheet forming processes, ISF is of a clear advantage in manufacturing small batch or customized parts. ISF needs die-less machine alone, while conventional sheet forming requires highly expensive facilities like dies, molds, and presses. This equipment takes long time to get preparation for manufacturing. However, ISF does not need the full facilities nor much cost and time. Because of the facts, ISF is continuously being used for small batch or prototyping manufacturing in current industries. However, spring-back induced in the process of incremental forming becomes a critical drawback on precision manufacturing. Since sheet metal, being a raw material for ISF, has property to resilience, spring-back would come in the case. It is the research objective to investigate how geometrical shaping parameters make effect on shape dimensional errors. In order to analyze the spring-back occurred in the process, this study experimented on Al 1015 material in the ISF. The statistical tool employed experimental design with factors. The table of orthogonal arrays of $L_8(2^7)$ are used to design the experiments and ANOVA method are employed to statistically analyze the collected data. The results of the analysis from this study shows that the type of shape and the slope of bottom are the significant, whereas the shape size, the shape height, and the side angle are not significant factors on dimensional errors. More error incurred on the pyramid than on the circular type in the experiments. The sloped bottom showed higher errors than the flat one.

Precise Positioning of Farm Vehicle Using Plural GPS Receivers - Error Estimation Simulation and Positioning Fixed Point - (다중 GPS 수신기에 의한 농업용 차량의 정밀 위치 계측(I) - 오차추정 시뮬레이션 및 고정위치계측 -)

  • Kim, Sang-Cheol;Cho, Sung-In;Lee, Seung-Gi;Lee, W.Y.;Hong, Young-Gi;Kim, Gook-Hwan;Cho, Hee-Je;Gang, Ghi-Won
    • Journal of Biosystems Engineering
    • /
    • v.36 no.2
    • /
    • pp.116-121
    • /
    • 2011
  • This study was conducted to develop a robust navigator which could be in positioning for precision farming through developing a plural GPS receiver with 4 sets of GPS antenna. In order to improve positioning accuracy by integrating GPS signals received simultaneously, the algorithm for processing plural GPS signal effectively was designed. Performance of the algorithm was tested using a simulation program and a fixed point on WGS 84 coordinates. Results of this study are aummarized as followings. 1. 4 sets of lower grade GPS receiver and signals were integrated by kalman filter algorithm and geometric algorithm to increase positioning accuracy of the data. 2. Prototype was composed of 4 sets of GPS receiver and INS components. All Star which manufactured by CMC, gyro compass made by KVH, ground speed sensor and integration S/W based on RTOS(Real Time Operating System)were used. 3. Integration algorithm was simulated by developed program which could generate random position error less then 10 m and tested with the prototype at a fixed position. 4. When navigation data was integrated by geometrical correction and kalman filter algorithm, estimated positioning erros were less then 0.6 m and 1.0 m respectively in simulation and fixed position tests.

Prediction of Heating Temperature of Jangjorim Food by Using Finite Element Method and Response Surface Methodology (유한요소분석법과 반응표면분석법을 이용한 장조림 식품의 가열온도 예측)

  • 신해헌;조원일
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.1
    • /
    • pp.32-40
    • /
    • 2004
  • This Study was conducted to predict temperature profile of Jangjorim (boiled beef in soy sauce) food during retorting using the commercial NISA (Numerical Integrated Elements for System Analysis) program. NISA program is a good tool to simulate the temperature profile of a specific material based upon the finite element method. The cold point of Jangjorim food located not at the geometrical center but at 26.9 mm backward in y plane because specific heat of soy sauce was 20% higher than that of boiled beef. The effects of heat transfer coefficients on heat transfer during retorting process of Jangjorim were analyzed by response surface methodology (RSM). Independent variables were thermal conductivity of soy sauce, thermal conductivity of boiled beef, and convection heat transfer coefficient and dependent variables were temperature error and lethality error. Thermal conductivity of soy sauce was the most significant contributor among those (P<0.01).

Projected Image Reconstruction Using Higher Order B-Spline (사영된 영상의 고차원 비-스플라인을 이용한 복원법)

  • Kim Sung-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.6
    • /
    • pp.97-108
    • /
    • 2005
  • In this paper a method of reconstructing a desired image through the geometrical transformation and the interpolation techniques is presented by comparing different interpolation schemes. Several different interpolation schemes are compared with respect to the amount of error that is the difference between the original and the reverse-projective transformed images. Higher ordered B-spline interpolation turned to be superior to other techniques in reconstructing the image which is desired to be close to the unskewed image as much as possible. In the results, this paper demonstrates that the reverse projection using the higher ordered B-spline interpolation is superior to those conventional interpolation methods, linear, cubic spline for reconstructing image. In experiments, the error decreases as the order of B-spline increases. The proposed technique is useful for various practical and theoretical applications in the area of satellite, medical, and commercial image processing.

  • PDF

A Positioning Algorithm Using Virtual Reference for Accuracy Improvement in Relay-Based Navigation System (중계 기반 항법시스템에서 위치정확도 향상을 위한 가상 기준점 활용 측위 알고리즘)

  • Lee, Kyuman;Lim, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.2102-2112
    • /
    • 2015
  • In this paper, we propose a new positioning scheme for accuracy improvement of Relay-based Navigation System. The conventional relay-based system occurs larger vertical error than horizontal one due to structural characteristics that positioning references are located toward same direction and a location of user is estimated by triangulation technique. In the proposed positioning scheme, the user position is reestimated using an additional virtual reference which is generated based on position information of reference stations in navigation signals and estimated initial user position. The nearest reference station from the estimated user position is selected as a virtual reference to minimize the effect of geometrical factor. The vertical error decreases by using reference points on multi planes, therefore, accurate positioning is possible than the conventional scheme. We demonstrated that the accuracy of a user is improved through simulation results.

MBO-Tree: A Hierarchical Representation Scheme for Shapes with Natural Approximation and Effective Localization (MBO-Tree: 형상의 자연스러운 근사화와 효과적인 지역화를 지원하는 계층적 표현 방법)

  • 허봉식;김동규;김민환
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.1
    • /
    • pp.18-27
    • /
    • 2002
  • A hierarchical representation scheme for planar curves, MBO-tree, is proposed in this paper, which provides natural approximation and efficient localization. MBO-tree is based on the Douglas-Peucker algorithm (iterative end-point fit algorithm), but approximation errors that are stored with corresponding points in MBO-tree nodes and are used for abstraction measures are adjusted by force to eliminate unnatural approximation. The error adjusting is just making the approximation error of a node in a MBO-tree to be less than or equal to that of its parent. In point of localization, the bounding area of a curve is represented with a minimum bounding octangle (MBO), which can enclose the curve more compactly compared with those of other hierarchical schemes, such as the strip tree, the arc tree and the HAL tree. The MBO satisfies the hierarchical inclusion property that is useful for hierarchical geometrical operations, such as the point-inclusion test and the polygon intersection test. Through several experiments, we found that the proposed scheme was able to approximate more naturally and to localize more effectively.

  • PDF

Missing Data Correction and Noise Level Estimation of Observation Matrix (관측행렬의 손실 데이터 보정과 잡음 레벨 추정 방법)

  • Koh, Sung-shik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.99-106
    • /
    • 2016
  • In this paper, we will discuss about correction method of missing data on noisy observation matrix and uncertainty analysis for the potential noise. In situations without missing data in an observation matrix, this solution is known to be accurately induced by SVD (Singular Value Decomposition). However, usually the several entries of observation matrix have not been observed and other entries have been perturbed by the influence of noise. In this case, it is difficult to find the solution as well as cause the 3D reconstruction error. Therefore, in order to minimize the 3D reconstruction error, above all things, it is necessary to correct reliably the missing data under noise distribution and to give a quantitative evaluation for the corrected results. This paper focuses on a method for correcting missing data using geometrical properties between 2D projected object and 3D reconstructed shape and for estimating a noise level of the observation matrix using ranks of SVD in order to quantitatively evaluate the performance of the correction algorithm.

The Study on Accuracy Improvement of Estuary Riverbed Monitoring (하구하상 모니터링 정밀도 향상에 관한 연구)

  • Park, Un-Yong;Kim, Yong-Bo;Back, Ki-Suk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.3 s.26
    • /
    • pp.23-34
    • /
    • 2003
  • Currently, the efficiency of GPS has been increased in the various precise survey like as the control survey and the navigation etc. Also, it is widely used in the deformation analysis of the structure, the measurement of the marine tides, the measurement of the river level and the topographic monitoring of seabed or riverbed by combined the measurement equipment for depth. In this study, we intend to increase in efficiency of the topographic monitoring of seabed or riverbed by combined with DGPS, RTK GPS and echo sounder. For this study, we defined the error correction of the echo sounder with the experiment of water tank which is considered the characteristic of estuary riverbed and then we developed the s/w for 3-dimensional monitoring of estuary riverbed and applied the s/w to field test and improved the various problems. On analyzing topography of estuary riverbed by combined GPS with echo sounder, the draught error which is yielded to change of length from the water surface by the movement of survey vessel to the end of the transducer was eliminated by geometrical rearrangement and we defined the correction formula $z=BM+SAH-DBR_{(i)}-DRT-ED$. The sounding error about the echo sounder and characteristic of estuary riverbed was found by understanding the relation of average diameter ind residual error and we defined correction formula, $Y=0.00474{\ast}ln(X)-0.0045$ by the regression analysis. and then we verified applicability of correction formula.

  • PDF

Application of Drone Photogrammetry for Current State Analysis of Damage in Forest Damage Areas (드론 사진측량을 이용한 산림훼손지역의 훼손 현황 분석)

  • Lee, Young Seung;Lee, Dong Gook;Yu, Young Geol;Lee, Hyun Jik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.3
    • /
    • pp.49-58
    • /
    • 2016
  • Applications of drone in various fields have been increasing in recent years. Drone has great potential for forest management. Therefore this paper is using drone for forest damage areas. Forest damage areas is divided into caused by anthropogenic and occurs naturally, the possibility of disasters, such as slope sliding, slope failures and landslides, sediment runoff exists. Therefore, this research was to utilize the drone photogrammetry to perform the damage analysis of forest damage areas. Geometrical treatment processing results in Drone Photogrammetry, the plane position error RMSE was ${\pm}0.034m$, the elevation error RMSE was ${\pm}0.017m$. The plane position error of orthophoto RMSE was ${\pm}0.083m$, the elevation error of digital elevation model RMSE was ${\pm}0.085m$. In addition, It was possible to current state analysis of damage in forest damage areas of airborne LiDAR data of before forest damage and drone photogrammetry data of after forest damage. and application of drone photogrammetry for production base data for restoration and design in forest damage areas.