• Title/Summary/Keyword: Geometrical error

Search Result 189, Processing Time 0.023 seconds

A study on the real-time NURBS interpolation algorithm (실시간 NURBS 보간 알고리즘에 관한 연구)

  • 최인휴;양민양
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.227-232
    • /
    • 2002
  • This paper presents an algorithm for general 2D and 3D NURBS interpolation and deals with command generation for 3 axes milling machining, including the feedrate control in order to meet two limitations, a geometrical accuracy and a dynamic restriction. Both of the maximum chordal error and the maximum acceleration specified by machine parameter lead to limit the allowable feedrate on the curvature of NURBS tool path. So, motion commands at every sampling time are continuously generated by those two limitations and programmed feedrate. Simulation results of interpolating several NURBS curves show that proposed NURBS algorithm is favorable in the machining free-form curve

  • PDF

Data Acquisition and Analysis of a Measuring Machine for Marine Engine′s Cams (선박 엔진용 캠 전용 측정기의 데이터 취득 및 해석)

  • 강재관;이경휘
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.160-166
    • /
    • 2002
  • In this paper, data acquisition and analysis of a measuring machine for marine engine's cams is discussed. A rotary encoder and linear scale of the machine to measure angular and linear displacement respectively are interfaced to the PC via encoder board with 2 channels. The design and measuring data are interpolated by cubic spline curves to compute the precision error which is defined by the maximum and minimum distances between two curves. The minimum zone fit of ISO is employed to evaluate the geometric deviation. The developed system takes only 5 minutes to measure and analyze while the CMM takes over 1 hours even with a skilled operator.

A Robust Watermarking Technique Using Affine Transform and Cross-Reference Points (어파인 변형과 교차참조점을 이용한 강인한 워터마킹 기법)

  • Lee, Hang-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.615-622
    • /
    • 2007
  • In general, Harris detector is commonly used for finding salient points in watermarking systems using feature points. Harris detector is a kind of combined comer and edge detector which is based on neighboring image data distribution, therefore it has some limitation to find accurate salient points after watermark embedding or any kinds of digital attacks. In this paper, we have used cross reference points which use not data distribution but geometrical structure of a normalized image in order to avoid pointing error caused by the distortion of image data. After normalization, we find cross reference points and take inverse normalization of these points. Next, we construct a group of triangles using tessellation with inversely normalized cross reference points. The watermarks are affine transformed and transformed-watermarks are embedded into not normalized image but original one. Only locations of watermarks are determined on the normalized image. Therefore, we can reduce data loss of watermark which is caused by inverse normalization. As a result, we can detect watermarks with high correlation after several digital attacks.

Development of a Contact Angle Measurement Method Based Upon Geometry (기하학적 원리에 의거한 접촉각의 측정)

  • 김동수;표나영;서승희;최우진;권영식
    • Resources Recycling
    • /
    • v.7 no.5
    • /
    • pp.41-45
    • /
    • 1998
  • A Hew way of contact angle measurement is derived based on simple geometrical calculation. Without using complicated contact angle measurement instrument. Just measuring the diameter and height of liquid lens made it possible to calculate the contact angle value with a reasonable reliability. To validate the contact angle value obtained by this method, contact angle of the same liquid lens is measured using conventional goniometer and it is verified that two values are nearly same within the limit of observational error.

  • PDF

Modeling and Calibration of a 3D Robot Laser Scanning System (3차원 로봇 레이저 스캐닝 시스템의 모델링과 캘리브레이션)

  • Lee Jong-Kwang;Yoon Ji Sup;Kang E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.34-40
    • /
    • 2005
  • In this paper, we describe the modeling for the 3D robot laser scanning system consisting of a laser stripe projector, camera, and 5-DOF robot and propose its calibration method. Nonlinear radial distortion in the camera model is considered for improving the calibration accuracy. The 3D range data is calculated using the optical triangulation principle which uses the geometrical relationship between the camera and the laser stripe plane. For optimal estimation of the system model parameters, real-coded genetic algorithm is applied in the calibration process. Experimental results show that the constructed system is able to measure the 3D position within about 1mm error. The proposed scheme could be applied to the kinematically dissimilar robot system without losing the generality and has a potential for recognition for the unknown environment.

Diffraction of Electromagnetic Waves by a Dielectric Wedge, Part I: Physical Optics Approximation (쇄기형 유전체에 의한 전자파의 회절, I부 : 물리광학근사)

  • 김세윤;라정웅;신상영
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.8
    • /
    • pp.874-883
    • /
    • 1988
  • A complete form of physical optics solution to the diffraction of electromagnetic waves by a dielectric wedge with arbitrary dielectric constant and general wedge angle is obtained for an incident plane wave with any angle. Based on the formulation of dual integral equation in the spectral domain, the physical optics solution is constructed by sum of geometrical optics term including multiple reflection inside the wedge and the edge diffracted field, of which diffraction functions are represented in a quite simple form as series of cotangent functions weighted by the Fresnel reflection coefficients. Since diffraction patterns of physical optics are discontinous at dielectric interfaces, Part II and III of these three companion papers will be concerned with correction to the error of the physical optics approximation.

  • PDF

Design of the precision micro-positioning stage (초정밀 마이크로 위치결정 스테이지의 설계)

  • 한창수;김경호;이찬홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.539-542
    • /
    • 1997
  • We present a micro-positioning stage that has minimized geometrical error and can drive in the 4-axis. This stage divided into two parts: $Z\theta_x$ $\theta_y$, motion stage and$\theta_z$ motion stage. These stages are constructed in flexure hinges, piezoelectric actuators and displacement scnsors. The dynamic model for each stage is obtained and their FE (finite element) models are made. Using the Lagrange's equation, the motion of equation is found. Through the parametric analysis and FE analysis, sensitiv~ty of the design parameters is executed. Finally, fundamental frequencies, maximum stress, and displacement sensitivity for each stage are obtained. We expect that this micro-positioning stage be a useful micro-alignment device for various applications.

  • PDF

Optimization of Build Parameters in SLS Process (SLS의 공정 파라미터 최적화에 관한 연구)

  • Heo, Seong-Min;O, Do-Geun;Choe, Gyeong-Hyeon;Lee, Seok-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.769-776
    • /
    • 2000
  • RP(Rapid Prototyping) technology is gaining its popularity in building a prototype in all industries. SLS(Slective Laser Sintering) is one of RP technologies, which is focused on tooling processes as well as three dimension solid model. There are several factors, the length and the cross-sectional area of a part, that have an effect on build setup in SLS process. In this paper, the computation on geometrical relationship is used to slice STL file and to estimate these factors. Based on these values, the build setup parameters such as the heating temperature, the laser power, and the powder cartridge feed rate are determined by neural network approaches. The test results show that the computation time is saved and the neural network approach is able to apply to get the optimal parameters of build process within an acceptable error rate.

Development of Morphological Pattern Recognition System - Morphological Shape Decomposition using Shape Function (형태론적 패턴인식 시스템의 개발 - 형상함수를 이용한 형태론적 형상분해)

  • Jong Ho Choi
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.8
    • /
    • pp.1127-1136
    • /
    • 1995
  • In this paper, a morphological shape decomposition method is proposed for the purpose of pattern recognition and image compression. In the method, a structuring element that geometrical characteristics is more similar to the shape function is preselected. The shape is decomposed into the primitive elements corresponding to the structuring element. A gray scale image also is transformed into 8 bit plane images for the hierarchical reconstruction required in image communication systems. The shape in each bitplane is decomposed to the proposed method. Through the experiment. it is proved that the description error is reduced and the coding efficiency is improved.

  • PDF

A Study on the Generation of Initial Shape for the Initiation of Optimal Blank Design Sequence (최적블랭크 설계를 위한 초기형상 생성에 관한 연구)

  • 심현보;장상득;박종규
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.90-101
    • /
    • 2004
  • An inverse mosaic method has been proposed to generate an initial blank shape from the final product shape. Differently from the geometric mapping method, the method can handle triangular patches. However, the generated blank shape is strongly dependent on the order of determination of nodes. In order to compensate the dependency error smoothing technique has been also developed. Although the accuracy has been improved greatly compared with the geometrical mapping method, the method has limitation, due to the no incorporation of plasticity theory. Even though the accuracy of the radius vector method is already proved. the method requires initial guess to start the method. In order to compromise the limitation of the present method and the radius vector method, the method has been connected to the radius vector method. The efficiency of the present optimal blank design method has been verified with some chosen examples.