• Title/Summary/Keyword: Geometrical Structure

Search Result 658, Processing Time 0.028 seconds

Origin of Dark-Energy and Accelerating Universe

  • Keum, Yong-Yeon
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.34.1-34.1
    • /
    • 2009
  • After SNIa and WMAP observations during the last decade, the discovery of the accelerated expansion of the universe is a major challenge to particle physics and cosmology. There are currently three candidates for the dark energy which results in this accelerated expansion: $\cdot$ a non-zero cosmological constant, $\cdot$ a dynamical cosmological constant (quintessence scalar field), $\cdot$ modifications of Einstein's theory of gravity. The scalar field model like quintessence is a simple model with time-dependent w, which is generally larger than -w1. Because the different w lead to a different expansion history of the universe, the geometrical measurements of cosmic expansion through observations of SNIa, CMB and baryon acoustic oscillations (BAO) can give us tight constraints on w. One of the interesting ways to study the scalar field dark-energy models is to investigate the coupling between the dark energy and the other matter fields. In fact, a number of models which realize the interaction between dark energy and dark matter, or even visible matter, have been proposed so far. Observations of the effects of these interactions will offer an unique opportunity to detect a cosmological scalar field. In this talk, after briefly reviewing the main idea of the three possible candidates for dark energy and their cosmological phenomena, we discuss the interactinng dark-energy model, paying particular attention to the interacting mechanism between dark energy with a hot dark matter (neutrinos). In this so-called mass-varying neutrino (MVN) model, we calculate explicitly the cosmic microwave background (CMB) radiation and large-scale structure (LSS) within cosmological perturbation theory. The evolution of the mass of neutrinos is determined by the quintessence scalar field, which is responsible for the cosmic acceleration today.

  • PDF

Effects of Operating Parameters on Ozone Production by Plasma Gun for Ballast Water Treatment (밸러스트 수 처리를 위한 Plasma Gun의 오존생성에 미치는 운전변수의 영향)

  • Lee, Hyeon-Don;Kim, Jong-Oh;Chung, Jae-Woo
    • Journal of Navigation and Port Research
    • /
    • v.34 no.3
    • /
    • pp.205-211
    • /
    • 2010
  • Effects of operating parameters on electrical properties and ozone generation of Plasma Gun for ballast water treatment were investigated in a laboratory scale experiment. Electrical discharges and ozone generation initiated with applying voltages higher than discharge onset value. Ozone concentration was almost linearly increased with the increase of applied voltage. The optimum electrode gap distance which gave the optimum energy efficiency of ozone generation was 1.95 mm in the experimented apparatus. The effect of inner electrode material on the electrical energy transfer was negligible, however, the difference of electrical and thermal conductivities between electrode materials significantly influenced the ozone generation. In a constant geometrical structure, the electrical energy density played an important role in the ozone generation. The increase of oxygen content in the feeding gas enhanced the ozone generation by lowering ionization potential and promoting ozone source.

A Study on Spatial Characteristics in the Paintings of Johannes Vermeer (요하네스 베르메르 회화에 나타난 공간적 특성에 관한 연구)

  • Kim, Jong-Jin
    • Korean Institute of Interior Design Journal
    • /
    • v.17 no.2
    • /
    • pp.22-29
    • /
    • 2008
  • Johannes Vermeer is one of the masters in the 17th century Dutch Genre Painting. Genre Painting represented the mundane everyday life and humble domestic spaces of the time. It was so unique in the history of western art. Most common subjects of the medieval art had been myths, historical heroes, and the christianity up to that time. However, Dutch Genre Painting that was originated from the 16th century Flandre art has fundamentally changed perception of art. Genre Painting was related to the prosperous development of civil society and early capitalism in the Netherlands of the time. In the paintings of Vermeer, there are unique spatial characteristics. This study aims to 'spatially' analyze the representation of everyday space perceived by the painter himself. Three analytical elements were chosen: light, space, and geometry. These elements have crucial roles to construct a space together within which Vermeer tried to express his discoveries as well as perception of the world. Four paintings were selected to be further analyzed in detail: $\ulcorner$A Maid Asleep$\lrcorner$ (1656-57), $\ulcorner$The Little Street$\lrcorner$ (1658-60), $\ulcorner$The Music Lesson$\lrcorner$ (1662-1665), and $\ulcorner$Young Woman with a Water Pitcher$\lrcorner$ (1662). It has been found that there are distinct spatial aspects in his paintings: Structure of Frontal Layers, Diffusion of Light, and Subtle Geometrical Tension. It is hoped that this sort of interdisciplinary research could enrich the related studies in the field of architecture & interior design, and could help to rediscover the everyday world that we live in here and now.

Light Coupling and Propagation Between a Fiber and a Dielectric Slab with a Conductor Cladding (측면 연마된 광섬유와 완전도체면 아래의 유전체 사이에서의 결합과 전파특성의 해석)

  • Kwon, Kwang-Hee;Yoon, Ki-Hong;Kim, Jeong-Hoon;Song, Jae-Won;Park, Euy-Dong;Son, Seok-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2A
    • /
    • pp.70-79
    • /
    • 2003
  • A theoretical presentation of evanescent coupling is offered with respect to the refractive indexes between a side polished optical fiber and an infinitely planar waveguide with a conductor cladding(PWGCC). The PWG is suspended at a constant distance from an unclad fiber core and attached with the perfect conductor(PEC) on one side. The behavior of the distributed coupler is examined using a coupled mode model, which takes account of the two dimensions of the waveguide configuration. The coupling and propagation of light were found to depend on both the relationship between the refractive index values of each structure and the configuration of the side polished fiber used in the PWGCC. The spreading of light in the unconfined direction of the PWGCC is described in terms of a simple geometrical interpretation of the synchromization condition that is in agreement with a previous investigation of the problem based on the coupled-mode theory(CMT). The power of the light propagation in the fiber decreased exponentially along the fiber axis as it was transferred to the PWGCC.

Stiffness of hybrid systems with and without pre-stressing

  • Miljanovic, Sladana;Zlatar, Muhamed
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.147-161
    • /
    • 2020
  • Constructive merging of "basic" systems of different behavior creates hybrid systems. In doing so, the structural elements are grouped according to the behavior in carrying the load into a geometric order that provides sufficient load and structure functionality and optimization of the material consumption. Applicable in all materializations and logical geometric forms is a transparent system suitable for the optimization of load-bearing structures. Research by individual authors gave insight into suitable system constellations from the aspect of load capacity and the approximatemethod of estimating the participation of partialstiffnesswithin the rigidity ofthe hybrid system. The obtained terms will continue to be the basisfor our own research of the influence of variable parameters on the behavior of hybrid systemsformed of glued laminated girder and cable of different geometric shapes. Previous research has shown that by applying the strut-type hybrid systems can increase the load capacity and reduce the deformability ofthe free girder.The implemented parametric analysis pointsto the basic parameterin the behavior of these systems-the rigidity ofindividual elements and the overallstiffnessofthe system.The basic idea ofpre-stressing is that, in the load system or individual load-bearing element, prior to application of the exploitation load, artificially challenge the forcesthatshould optimize the finalsystembehaviorin the overall load. Pre-stressing is possible only if the supporting system orsystem's element possesssufficientstrength orstiffness, orreaction to the imposed forces of pre-stressing. In this paper will be presented own research of the relationship of partial stiffness of strut-type hybrid systemsofdifferentgeometric forms.Conducted parametric analysisofhybridsystemswithandwithoutpre-stressing, and on the example of the glulam-steel strut-type hybrid system under realistic conditions of change in the moisture content ofthe wooden girder,resulted in accurate expressions and diagramssuitable for application in practice.

Study on the Off-design Performance on a Plug Nozzle with Variable Throat Area

  • Azuma, Nobuyuki;Tanatsugu, Nobuhiro;Sato, Tetsuya;Kobayashi, Hiroaki;Hongo, Motoyuki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.644-648
    • /
    • 2004
  • In the present study were examined numerically and experimentally the off-design performance characteristics on an axisymmetric plug nozzle with variable throat area. In this nozzle concept, its throat area can be changed by translating the plug into the axial direction. First, a mixed-expansion plug nozzle, in which two expansion parts are arranged both inside and outside, was designed by means of the method of characteristics. Second, the CFD analysis was verified by the cold-flow wind tunnel test. Third, its performance characteristics were evaluated over a wide range of pressure ratio from half to double throat area through the design point, using the CFD code verified by the wind tunnel tests. It was made clear from the study that not so critical thrust efficiency losses were found and the maximum thrust efficiency loss was at most approximately 5 % under off-design conditions without external flow. This result shows that a plug nozzle can give the altitude compensation even under off-design geometry operations. However, shock waves were observed in the inner expansion part under the doubled throat area operation and thus some thermal problems may be caused on the plug surface. Furthermore, collapse of cell structure on the plug surface was observed with external flow (around Mach number 2.0) as it became lower pressure ratio below the design point and the fact may result in big efficiency loss regardless of geometrical configuration.

  • PDF

The aerostatic response and stability performance of a wind turbine tower-blade coupled system considering blade shutdown position

  • Ke, S.T.;Xu, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.25 no.6
    • /
    • pp.507-535
    • /
    • 2017
  • In the strong wind shutdown state, the blade position significantly affects the streaming behavior and stability performance of wind turbine towers. By selecting the 3M horizontal axis wind turbine independently developed by Nanjing University of Aeronautics and Astronautics as the research object, the CFD method was adopted to simulate the flow field of the tower-blade system at eight shutdown positions within a single rotation period of blades. The effectiveness of the simulation method was validated by comparing the simulation results with standard curves. In addition, the dynamic property, aerostatic response, buckling stability and ultimate bearing capacity of the wind turbine system at different shutdown positions were calculated by using the finite element method. On this basis, the influence regularity of blade shutdown position on the wind-induced response and stability performance of wind turbine systems was derived, with the most unfavorable working conditions of wind-induced buckling failure of this type of wind turbines concluded. The research results implied that within a rotation period of the wind turbine blade, when the blade completely overlaps the tower (Working condition 1), the aerodynamic performance of the system is the poorest while the aerostatic response is relatively small. Since the influence of the structure's geometrical nonlinearity on the system wind-induced response is small, the maximum displacement only has a discrepancy of 0.04. With the blade rotating clockwise, its wind-induced stability performance presents a variation tendency of first-increase-then-decrease. Under Working condition 3, the critical instability wind speed reaches its maximum value, while the critical instability wind speed under Working condition 6 is the smallest. At the same time, the coupling effect between tower and blade leads to a reverse effect which can significantly improve the ultimate bearing capacity of the system. With the reduction of the area of tower shielded by blades, this reverse effect becomes more obvious.

Measurement and Analysis of the Structure by Using the Terrestrial Camera (지상실체사진기를 이용한 구조물의 측정과 해석)

  • 안철호
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.2 no.1
    • /
    • pp.54-64
    • /
    • 1984
  • This paper is a study on structural measurement by using a terrestrial camera. The aim of this paper is to understand the method of a composition by analyzing the geometrical compositive ratio of threestoried pagodas at Gamun-Sa, Gosun-Sa, Bulguk-Sa, Seated iron Buddha in Kwang-Jn, and Main-Seat Buddha at Sukkuram Cave-temple. Measured data and contour maps are accurately obtained by means of photogrammetry, and the following points are able to he found by analyzing them. At first, for Stone Pagodas. the breaths of the Okgesuks are made to the ratio, 8 : 7 : 6. And when an equililateral triangle and an 45$^{\circ}$ isosceles triangle are drawn of which the bases are the length of the upper Gabsuk, and then a circle is drawn whose radius is the length between the vertexes of the two triangles and its center is the vertex of the former the circle passes the upper line of the third Oksin. Also it can be found that an $70^{\circ}$ isosceles triangle being drawn at base line, the triangle passes the edge point of the upper Gabsuk and the center of the third Okgesuk. Also for Budha statues, it can be found that circles whose center is that of eyes can be drawn, and if 2 lines which pass the shoulder and the center of Buddha's body are extended, they intersect the knees.

  • PDF

Design of Broadband Planar Dipole Antenna for Indoor Digital TV Reception (실내 디지털 TV 수신용 광대역 평면 다이폴 안테나 설계)

  • Lee, Jong-Ig;Yeo, Junho;Park, Jin-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.497-502
    • /
    • 2014
  • In this paper, a design method for a broadband planar dipole antenna for terrestrial digital television (DTV) reception is studied. The dipole is modified to half bow-tie type for size reduction. The balun between feeding microstrip line and coplanar strip (CPS) line is implemented with a rectangular patch inserted along the center of the CPS line. The proposed antenna is the structure of dual resonances, one is due to the dipole and the other is due to the CPS line attached by the balun. The effects of various geometrical parameters on the antenna performance are examined, and the antenna is designed for terrestrial DTV band (470-806 MHz). The prototype antenna is fabricated on an FR4 substrate with a size of $95mm{\times}178mm$, and tested experimentally to verify the results of this study.

Investigating Binding Area of Protein Surface using MCL Algorithm (MCL 알고리즘을 이용한 단백질 표면의 바인딩 영역 분석 기법)

  • Jung, Kwang-Su;Yu, Ki-Jin;Chung, Yong-Je;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.14D no.7
    • /
    • pp.743-752
    • /
    • 2007
  • Proteins combine with other materials to achieve their function and have similar function if their active sites are similar. Thus we can infer the function of protein by identifying the binding area of proteins. This paper suggests the novel method to select binding area of protein using MCL (Markov Cluster) algorithm. We construct the distance matrix from surface residues distance on protein. Then this distance matrix is transformed to connectivity matrix for applying MCL process. We adopted Catalytic Site Atlas (CSA) data to evaluate the proposed method. In the experimental result using CSA data (94 selected single chain proteins), our algorithm detects the 91 (97%) binding area near by active site of each protein. We introduced a new geometrical features and this mainly contributes to reduce the time to analyze the protein by selecting the residues near by active site.