• Title/Summary/Keyword: Geometrical Properties

Search Result 562, Processing Time 0.028 seconds

Development of Simple Articulated Human Models using Superquadrics for Dynamic Analysis

  • Lee, Hyun-Min;Kim, Jay-Jung;Chae, Je-Wook
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.715-725
    • /
    • 2011
  • Objective: This study is aimed at developing Articulated Human Models(AHM) using superquadrics to improve the geometric accuracy of the body shape. Background: The previous work presents the AHM with geometrical simplification such as ellipsoids to improve analysis efficiency. However, because of the simplicity, their physical properties such as a center of mass and moment of inertia are computed with errors compared to their actual values. Method: This paper introduces a three steps method to present the AHM with superquadrics. First, a 3D whole body scan data are divided into 17 body segments according to body joints. Second, superquadric fitting is employed to minimize the Euclidean distance between body segments and superquadrics. Finally, Fee-Form Deformation is used to improve accuracy over superquadric fitting. Results: Our computational experiment shows that the superquadric models give better accuracy of dynamic analysis than that of ellipsoid ones. Conclusion: We generate the AHM composed of 17 superquadrics and 16 joints using superquadric fitting. Application: The AHM using superquadrics can be used as the base model for dynamics and ergonomics applications with better accuracy because it presents the human motion effectively.

Numerical modelling of stress and deflection behaviour for welded steel beam-column

  • Soy, Ugur
    • Steel and Composite Structures
    • /
    • v.12 no.3
    • /
    • pp.249-260
    • /
    • 2012
  • In this study, stress and deflection behaviours of T-type welding joint applied to HE200M steel beam and column were investigated in finite element method (FEM) under different distributed loads. In the 3D-FEM modelling, glue option was used to contact between steel materials and weld nuggets. Geometrical model was designed as 3-dimensional solid in ANSYS software program. After that, homogeneous, linear and isotropic properties were used to design to materials of model. Solid-92 having 3-dimensional, 4 faced and 10-noded was selected as element type. In consequence of mesh operation, elements of 13285 and nodes of 28086 were occurred. Load distribution was applied to top surface of steel beam to determine behaviours of stress and deflection. As a result of FEM analysis applied with the loads of 55,000 N, 110,000 N and 220,000 N, maximum values were obtained as 116 N/$mm^2$, 232 N/$mm^2$ and 465 N/$mm^2$ for stress and obtainedas 1,083 mm, 2,166 mm and 4.332 mm for deflection, respectively. When modelling results and classical calculation values were compared, it was obtained difference of 10 % for stress values and 2.5% for deflection values.

Probabilistic ultimate strength analysis of submarine pressure hulls

  • Cerik, Burak Can;Shin, Hyun-Kyoung;Cho, Sang-Rai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.101-115
    • /
    • 2013
  • This paper examines the application of structural reliability analysis to submarine pressure hulls to clarify the merits of probabilistic approach in respect thereof. Ultimate strength prediction methods which take the inelastic behavior of ring-stiffened cylindrical shells and hemi-spherical shells into account are reviewed. The modeling uncertainties in terms of bias and coefficient of variation for failure prediction methods in current design guidelines are defined by evaluating the compiled experimental data. A simple ultimate strength formulation for ring-stiffened cylinders taking into account the interaction between local and global failure modes and an ultimate strength formula for hemispherical shells which have better accuracy and reliability than current design codes are taken as basis for reliability analysis. The effects of randomness of geometrical and material properties on failure are assessed by a prelimnary study on reference models. By evaluation of sensitivity factors important variables are determined and comparesons are made with conclusions of previous reliability studies.

Fire Resistance Characteristics of Polyolefin cable Insulating Materials for Flame Retardant (난연성 폴리 올레핀 케이블 절연재료의 내화특성)

  • 윤헌주;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.251-254
    • /
    • 2001
  • In this paper, we analysed the properties change of electric wire when the thermal stress was applied to NFR-8 and FR-PVC [600] wire. Measurement is made of the attenuation of a light beam by smoke accumulating with in a closed chamber due to nonflamining pyrolytic decomposition and flaming combustion. Results are expressed in terms of specific optical density which is derived from a geometrical factor and the measured optical density a measurement characteristic of the concentration of smoke. Referenced documents were ASTM E662 standard test method for specific Ds generated by solid materials. The furnace control system shall maintain the required irradiance level under steady-state condition with the chamber door closed of 2.5${\pm}$0.04[w/$\textrm{cm}^2$] for 20 min. According to the results of the smoke density analysis of NFR-8 and FR-PVC the highest decomposition flaming smoke density range of NFR-8 and FR-PVC were 7.2 to 77.5 and 51.1 respectively. Nonflaming smoke density range of NFR-8 and FR-PVC were 100.4 to 112.2 and 126.5 to 398.8. The amount of carbon monoxide generated was found to be much higher in FR-PVC decomposition than in NFR-8 due to incomp1ete combustion of FR-PVC which has high content of carbon in compound.

  • PDF

Vehicle Shadow Removal For Intelligent Traffic System

  • Jang, Dae-Geun;Kim, Eui-Jeong
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.3
    • /
    • pp.123-129
    • /
    • 2006
  • The limited number of roads and the increasing number of vehicles demand the automatic regulation of overspeed vehicles, illegal vehicles, and overloaded vehicles and the automatic charge calculation depending on the type of the vehicle. To meet such requirements, it is important to remove the shadow of the vehicle as processing and recognizing an image captured by a camera. The shadow of the vehicle is likely to cause misclassification of the vehicle type due to diverse errors and mistakes occurring when detecting geometrical properties of the vehicle. In case that shadows of two different vehicles are overlapped, not only the type of the vehicles may be misclassified but also it is difficult to accurately identify the type of the vehicles. In this paper, we propose a robust algorithm to remove the shadow of a vehicle by calculating the luminance, the chrominance, the gradient density of the cast shadow from information acquired using the image subtraction of the background, and to recognize the substantial vehicle figure. Even when it is hard to detect and split a target vehicle from its shadow as shadows of vehicles are attached to each other, our robust algorithm can detect the vehicle figure only. We implemented our system with a general camera and conducted experiments on various vehicles on general roads to find out our vehicle shade removal algorithm is efficient when detecting and recognizing vehicles.

A Study on the Calculation of the Design Loads for Blast Doors of Underground Ammunition Facilities Using M&S (M&S를 통한 지하탄약고의 격실 방폭문 내폭력 산정 연구)

  • Park, Young Jun;Baek, Jonghyuk;Son, Kiyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.302-310
    • /
    • 2016
  • An underground ammunition facility requires less quantity distances than the aboveground counterpart. However, chamber blast doors which resist the high blast-pressures are necessary for prevention of the consecutive explosions when an accident explosion occurs at any chamber. This paper aims to propose an procedure for calculation of the design loads for the chamber blast doors. Modeling considerations are drawn through analyzing the influences of the geometrical shapes and mechanical properties of rocks on the propagation of pressure wave along with the tunnels. Additionally, the design loads for the chamber blast doors in a newly-built underground ammunition facility are calculated based on the proposed procedure.

Application of Optical Simulation in Direct-type Backlight Design (직하형 백라이트 설계의 광학시뮬레이션의 응용)

  • Han, Jeong-Min;Kim, Byoung-Yong;Kang, Dong-Hun;Kim, Young-Hwan;Kim, Jong-Hwan;Lee, Sang-Keuk;Ok, Chul-Ho;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.415-415
    • /
    • 2007
  • In this study. it was investigated about optical simulation in direct-type backlight design. Direct-type backlight has been used high-brightness backlight such as LCD television application. The key parameter in designing direct-type backlight was consists of three geometrical dimension such as the distance of two lamps. the gap of lamp and reflection plate and the number of lamps. It has many variation in optical design and it causes the different properties in backlight system. It shows the best values of above parameters; 26mm of the distance of two lamps. 4.5mm of the gap of lamp and reflection plate and 16 lamps. And we produced the specimen as above condition. and acquired good result in backlight such as the value of the brightness is 6436 nit in center of emission area and less than 5% in brightness uniformity. It shows the effective ways of designing backlight system using optical simulation method.

  • PDF

Seperate Driving System For Large Area X-ray Detector In Radiology (대면적 X-ray 검출기를 위한 분할 구동 시스템)

  • Lee, D.G.;Park, J.K.;Kim, D.H.;Nam, S.H.;Ahn, S.H.;Park, H.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.388-391
    • /
    • 2003
  • The properties of these detectors can be controlled by electronics and exposure conditions. Flat-panel detectors for digital diagnostic imaging convert incident x-ray images to charge images. Flat panel detectors gain more interest real time medical x-ray imaging. Active area of flat panel detector is $14{\times}17$ inch. Detector is based on a $2560{\times}3072$ away of photoconductor and TFT pixels. X-ray conversion layer is deposited upper TFT array flat panel with a 500m by thermal deposition technology. Thickness uniformity of this layer is made of thickness control technology(5%) of thermal deposition system. Each $139m{\times}139m$ pixel is made of thin film transistor technology, a storage capacitor and charge collection electrode having geometrical fill factor of 86%. Using the separate driving system of two dimensional mosaic modules for large area, that is able to 4.2 second per frame. Imaging performance is suited for digital radiography imaging substitute by conventional radiography film system..

  • PDF

Investigation of Geometrical Properties on Deposition Rate in Cesium Iodine Film (증착속도에 따른 CSI layer의 기하학적 특성 연구)

  • Lee, Kyu-Hong;Park, Ji-Koon;Kang, Sang-Sik;Cha, Byung-Yul;Cho, Sung-Ho;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.415-417
    • /
    • 2003
  • CsI 형광체는 X선에 대한 분해능 및 변환효율이 우수한 물질이다. 최근 대면적 평판형 X선 영상검출기의 변환층으로 이용하기 위해 CsI 형광체의 대면적 제조에 대한 연구가 활발히 진행되고 있다. 본 논문은 진공 열증착법을 이용하여 증착속도(3, 3.8, $4.5\;{\mu}m/min$)에 따라 $20\;{\mu}m$ 두께의 CsI 필름을 제조하였고, XRD 및 SEM 분석을 통해 CsI 필름의 기하학적 구조를 조사하였다. 증착된 CsI 필름은 증착속도에 관계없이 복잡한 다결정 구조를 가지며, $3\;{\mu}m/min$의 증착속도에서 약 $1\;{\mu}m$ 크기로 needle-like 한 columnar structure를 가졌다. As results, about 3um/min evaporation rate formed as good geometry characteristics CsI layer.

  • PDF

Vault macro-element with equivalent trusses in global seismic analyses

  • Giresini, Linda;Sassu, Mauro;Butenweg, Christoph;Alecci, Valerio;De Stefano, Mario
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.409-423
    • /
    • 2017
  • This paper proposes a quick and simplified method to describe masonry vaults in global seismic analyses of buildings. An equivalent macro-element constituted by a set of six trusses, two for each transverse, longitudinal and diagonal direction, is introduced. The equivalent trusses, whose stiffness is calculated by fully modeled vaults of different geometry, mechanical properties and boundary conditions, simulate the vault in both global analysis and local analysis, such as kinematic or rocking approaches. A parametric study was carried out to investigate the influence of geometrical characteristics and mechanical features on the equivalent stiffness values. The method was numerically validated by performing modal and transient analysis on a three naves-church in the elastic range. Vibration modes and displacement time-histories were compared showing satisfying agreement between the complete and the simplified models. This procedure is particularly useful in engineering practice because it allows to assess, in a simplified way, the effectiveness of strengthening interventions for reducing horizontal relative displacements between vault supports.