• Title/Summary/Keyword: Geometrical Modeling

Search Result 230, Processing Time 0.026 seconds

A Study on Extraction and its Storage method of Topological Information from Common 2-D CAD Using The Boundary-Representation Method (범용 2D MCAD 상에서 경계표현법을 이용한 위상 정보 추출 및 그 저장방식에 관한 연구)

  • Hong, Sang-Hoon;Han, Seong-Young;Kim, Yong-Yun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.25-34
    • /
    • 1999
  • In spite of the advance of 3D solid modeling technology, there are some distinct areas where 2D CAD S/W are still dominant, and more competent comparing with 3D CAD S/W. For example, in the manufacturing of 2D-shaped electrical parts, most related manufacturing tools have 2D geometric features by nature, and 3D solid models applied to these parts have substantial overheads. Nevertheless, most 2D CAD S/W have no topological inquiry services because they have no such information on their geometrical database inherently. Thus, it is needed to extract such information from 2D CAD database for developing more advanced application such as automated drafting/design S/W. In this paper, the extraction of topological information from 2D CAD has been performed in general way using concept of B-rep. A general extraction algorithm, data structure and meta file format for 2D topological object have been developed and successfully applied to the development of the automated lead frame die design system in Samsung Aerospace. it is also possible to provide a flexible, powerful topology-oriented functionality on any common 2D CAD S/W.

  • PDF

Dynamic response of concrete beams reinforced by Fe2O3 nanoparticles subjected to magnetic field and earthquake load

  • Mohammadian, Hossein;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.589-598
    • /
    • 2017
  • In this paper, dynamic response of the horizontal concrete beam subjected to seismic ground excitation is investigated. The structure is reinforced by $Fe_2O_3$ nanoparticles which have the magnetic properties. The hyperbolic shear deformation beam theory (HSDBT) is used for mathematical modeling of the structure. Based on the Mori-Tanaka model, the effective material properties of concrete beam is calculated considering the agglomeration of $Fe_2O_3$ nanoparticles. Applying energy method and Hamilton's principle, the motion equations are derived. Harmonic differential quadrature method (HDQM) along with Newmark method is utilized for numerical solution of the motion equations. The effects of different parameters such as volume fraction and agglomeration of $Fe_2O_3$ nanoparticles, magnetic field, boundary conditions and geometrical parameters of concrete beam are studied on the dynamic response of the structure. In order to validation of this work, an exact solution is used for comparing the numerical and analytical results. The results indicated that applying magnetic field decreases the of the structure up to 54 percent. In addition, increase too much the magnetic field (Hx>5e8 A/m) does not considerable effect on the reduction of the maximum dynamic displacement.

Dynamic Characteristics of Composite Thin-Walled Beams with a Chord wise Asymmetric Cross-Section: I. Single-Cell (시위 방향 비대칭 단면의 복합재료 박벽보의 동특성 연구: I. 단일-셀)

  • Kim, Keun-Taek
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.6
    • /
    • pp.41-49
    • /
    • 2018
  • In this study, the theoretical dynamic characteristics of a thin-walled composite beam with a single-cell of chordwise asymmetric cross-section was studied. Mathematical modeling was done by considering the transverse shear effects, the warping restraint effects, the constant taper ratio in the longitudinal direction of the beam, and the geometrical cross-section ratio. The mass coefficients, stiffness coefficients, and Eigen frequencies of the selected section were investigated. In particular, the effects of the taper ratio and cross-section ratio of the model on the Eigen frequencies were analyzed and compared when the asymmetry of the section was considered and the warping function was not corrected.

Seismic Behavior Investigation of the Corrugated Steel Shear Walls Considering Variations of Corrugation Geometrical Characteristics

  • Farzampour, Alireza;Mansouri, Iman;Hu, Jong Wan
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1297-1305
    • /
    • 2018
  • The corrugated steel plate shear walls have recently been proposed to address the seismic issues associated with simple steel plate shear walls; however, stiffness, strength, and ductility of the corrugated shear walls are significantly affected by varying the corrugation geometry under seismic loading. The present study investigates steel shear walls' models with corrugated or simple infill plates subjected to monotonic and cyclic loads. The performance of the corrugated steel plate is evaluated and then compared to that of the simple steel plates by evaluating the damping ratios and energy dissipation capability. The effect of corrugation profile angle, the existence of an opening, and the corrugation subpanel length are numerically investigated after validation of the finite element modeling methodology. The results demonstrate that incorporating corrugated plates would lead to better seismic damping ratios, specifically in the case of opening existence inside of the infill plate. Specifically, the corrugation angle of $30^{\circ}$ decreases the ultimate strength, while increasing the initial stiffness and ductility. In addition, the subpanel length of 100 mm is found to be able to improve the overall performance of shear wall by providing each subpanel appropriate support for the adjacent subpanel, leading to a sufficient buckling resistance performance.

Nonlinear analysis of stability of rock wedges in the abutments of an arch dam due to seismic loading

  • Mostafaei, Hasan;Behnamfar, Farhad;Alembagheri, Mohammad
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.4
    • /
    • pp.295-317
    • /
    • 2020
  • Investigation of the stability of arch dam abutments is one of the most important aspects in the analysis of this type of dams. To this end, the Bakhtiari dam, a doubly curved arch dam having six wedges at each of its abutments, is selected. The seismic safety of dam abutments is studied through time history analysis using the design-based earthquake (DBE) and maximum credible earthquake (MCE) hazard levels. Londe limit equilibrium method is used to calculate the stability of wedges in abutments. The thrust forces are obtained using ABAQUS, and stability of wedges is calculated using the code written within MATLAB. Effects of foundation flexibility, grout curtain performance, vertical component of earthquake, nonlinear behavior of materials, and geometrical nonlinearity on the safety factor of the abutments are scrutinized. The results show that the grout curtain performance is the main affecting factor on the stability of the abutments, while nonlinear behavior of the materials is the least affecting factor amongst others. Also, it is resulted that increasing number of the contraction joints can improve the seismic stability of dam. A cap is observed on the number of joints, above which the safety factor does not change incredibly.

Dynamic stability and structural improvement of vibrating electrically curved composite screen subjected to spherical impactor: Finite element and analytical methods

  • Xiao, Caiyuan;Zhang, Guiju
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.533-552
    • /
    • 2022
  • The current article deals with the dynamic stability, and structural improvement of vibrating electrically curved screen on the viscoelastic substrate. By considering optimum value for radius curvature of the electrically curved screen, the structure improvement of the system occurs. For modeling the electrically system, the Maxwell's' equation is developed. Hertz contact model in employed to obtain contact forces between impactor and structure. Moreover, variational methods and nonlinear von Kármán model are used to derive boundary conditions (BCs) and nonlinear governing equations of the vibrating electrically curved screen. Galerkin and Multiple scales solution approach are coupled to solve the nonlinear set of governing equations of the vibrating electrically curved screen. Along with the analytical solution, 3D finite element simulation via ABAQUS package is provided with the aid of a FE package for simulating the current system's response. The results are categorized in 3 different sections. First, effects of geometrical and material parameters on the vibrational performance and stability of the curves panel. Second, physical properties of the impactor are taken in to account and their effect on the absorbed energy and velocity profile of the impactor are presented. Finally, effect of the radius and initial velocity on the mode shapes of the current structure is demonstrated.

A hybrid artificial intelligence and IOT for investigation dynamic modeling of nano-system

  • Ren, Wei;Wu, Xiaochen;Cai, Rufeng
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.165-174
    • /
    • 2022
  • In the present study, a hybrid model of artificial neural network (ANN) and internet of things (IoT) is proposed to overcome the difficulties in deriving governing equations and numerical solutions of the dynamical behavior of the nano-systems. Nano-structures manifest size-dependent behavior in response to static and dynamic loadings. Nonlocal and length-scale parameters alongside with other geometrical, loading and material parameters are taken as input parameters of an ANN to observe the natural frequency and damping behavior of micro sensors made from nanocomposite material with piezoelectric layers. The behavior of a micro-beam is simulated using famous numerical methods in literature under base vibrations. The ANN was further trained to correlate the output vibrations to the base vibration. Afterwards, using IoT, the electrical potential conducted in the sensors are collected and converted to numerical data in an embedded mini-computer and transferred to a server for further calculations and decision by ANN. The ANN calculates the base vibration behavior with is crucial in mechanical systems. The speed and accuracy of the ANN in determining base excitation behavior are the strengths of this network which could be further employed by engineers and scientists.

Small-scale effects on wave propagation in curved nanobeams subjected to thermal loadings based on NSGT

  • Ibrahim Ghoytasi;Reza Naghdabadi
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.187-200
    • /
    • 2024
  • This study focuses on wave propagation analysis in the curved nanobeam exposed to different thermal loadings based on the Nonlocal Strain Gradient Theory (NSGT). Mechanical properties of the constitutive materials are assumed to be temperature-dependent and functionally graded. For modeling, the governing equations are derived using Hamilton's principle. Using the proposed model, the effects of small-scale, geometrical, and thermo-mechanical parameters on the dynamic behavior of the curved nanobeam are studied. A small-scale parameter, Z, is taken into account that collectively represents the strain gradient and the nonlocal parameters. When Z<1 or Z>1, the phase velocity decreases/increases, and the stiffness-softening/hardening phenomenon occurs in the curved nanobeam. Accordingly, the phase velocity depends more on the strain gradient parameter rather than the nonlocal parameter. As the arc angle increases, more variations in the phase velocity emerge in small wavenumbers. Furthermore, an increase of ∆T causes a decrease in the phase velocity, mostly in the case of uniform temperature rise rather than heat conduction. For verification, the results are compared with those available for the straight nanobeam in the previous studies. It is believed that the findings will be helpful for different applications of curved nanostructures used in nano-devices.

The Analysis of Regional Scale Topographic Effect Using MM5-A2C Coupling Modeling (국지규모 지형영향을 고려하기 위한 MM5-A2C 결합 모델링 특성 분석)

  • Choi, Hyun-Jeong;Lee, Soon-Hwan;Kim, Hak-Sung
    • Journal of the Korean earth science society
    • /
    • v.36 no.3
    • /
    • pp.210-221
    • /
    • 2015
  • The terrain features and surface characteristics are the most important elements not only in meteorological modeling but also in air quality modeling. The diurnal evolution of local climate over complex terrain may be significantly controlled by the ground irregularities. Such topographic features can affect a thermally driven flow, either directly by causing changes in the wind direction or indirectly, by inducing significant variations in the ground temperature. Over a complex terrain, these variations are due to the nonuniform distribution of solar radiation, which is highly determined by the ground geometrical characteristics, i.e. slope and orientation. Therefore, the accuracy of prediction of regional scale circulation is strong associated with the accuracy of land-use and topographic information in meso-scale circulation assessment. The objective of this work is a numerical simulation using MM5-A2C model with the detailed topography and land-use information as the surface boundary conditions of the air flow field in mountain regions. Meteorological conditions estimated by MM5-A2C command a great influence on the dispersion of mountain areas with the reasonable feature of topography where there is an important difference in orographic forcing.

Stability analysis of closely-spaced tunnel using RFEM (확률유한요소 해석에 의한 근접터널 안정성 분석)

  • Kim, Sang-Gyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.349-360
    • /
    • 2008
  • In this paper, the modeling procedure of random field with an elasto-plastic finite element algorithm and probability of failure on closely-spaced tunnel were investigated. Local average subdivision (LAS) method which can generate discrete random variables fast and accurately as well as change the resolution in certain region was used. And correlated value allocating and weighted average method were suggested to implement geometrical characteristics of tunnel. After the probability of failure on the test problem was thoroughly investigated using random finite element method, the results were compared with the deterministic strength reduction factor method and single random variable method. Of particular importance in this work, is the conclusion that the probability of failure determined by simplified probabilistic analysis, in which spatial variability is ignored by assuming perfect correlation, can be estimated from the safety factor determined by strength reduction factor method. Also, single random variable method can lead to unconservative estimates of the probability of failure.

  • PDF