• 제목/요약/키워드: Geometrical Model

검색결과 868건 처리시간 0.027초

3-D elastoplastic finite element analysis of umbrella arch reinforcement system for tunnelling

  • Shin Hyu-Soung;Sicilia Carlos;Bae Gyu-Jin;Kim Chang-Yong;Hong Sung-Wan
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.184-191
    • /
    • 2003
  • In this paper, a mathematical framework based on a homogenisation technique to simulate 'umbrella arch reinforcement system' (UARS) and its implementation into a 3D Finite Element program that can consider stage construction situations are presented. The constitutive model developed allows considering the main design parameters of the problem and only requires geometrical and mechanical properties of the constituents. Additionally, the use of a homogenisation approach implies that the generation of the Finite Element mesh can be easily produced and that re-meshing is not required as basic geometrical parameters such as the orientation of the pipes are changed. The model developed is used to simulate tunnelling with the UARS. From the analyses, the effects of the main design parameters on the elastic and the elastoplastic analyses are considered.

  • PDF

Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Yahya, Yahya Zakariya;Barati, Mohammad Reza;Jayasimha, Anirudh Narasimamurthy;Khan, Imran
    • Advances in concrete construction
    • /
    • 제9권4호
    • /
    • pp.397-406
    • /
    • 2020
  • The present article deals with post-buckling of geometrically imperfect concrete plates reinforced by graphene oxide powder (GOP) based on general higher order plate model. GOP distributions are considered as uniform and linear models. Utilizing a shear deformable plate model having five field components, it is feasible to verify transverse shear impacts with no inclusion of correction factor. The nonlinear governing equations have been solved via an analytical trend for deriving post-buckling load-deflection relations of the GOP-reinforced plate. Derived findings demonstrate the significance of GOP distributions, geometric imperfectness, foundation factors, material compositions and geometrical factors on post-buckling properties of reinforced concrete plates.

Dynamic Analysis of a Geometrical Non-Linear Plate Using the Continuous-Time System Identification

  • Lim, Jae-Hoon;Choi, Yeon-Sun
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1813-1822
    • /
    • 2006
  • The dynamic analysis of a plate with non-linearity due to large deformation was investigated in this study. There have been many theoretical and numerical analyses of the non-linear dynamic behavior of plates examining theoretically or numerically. The problem is how correctly an analytical model can represent the dynamic characteristics of the actual system. To address the issue, the continuous-time system identification technique was used to generate non-linear models, for stiffness and damping terms, and to explain the observed behaviors with single mode assumption after comparing experimental results with the numerical results of a linear plate model.

기하학적 비선형성을 갖는 평판의 동특성 해석 (Dynamic Analysis of a Geometrical Non-linear Plate)

  • 임재훈;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.498-503
    • /
    • 2003
  • Dynamic analysis of a plate with non-linearity due to large deformation is performed in the study. There have been many researches about the non-linear dynamic behavior of plates examining by means of theoretical or numerical analyses. But it is important how exactly model the actual system. In this respect, the Continuous-Time system identification technique is used to generate non-linear models, for stiffness and damping terms, to explain the observed behaviors with single mode assumptions for the simplicity after comparing the experimental results with the numerical results of a linear plate model.

  • PDF

Ultimate behavior of reinforced concrete cooling tower: Evaluation and comparison of design guidelines

  • Noh, Hyuk-Chun;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • 제22권2호
    • /
    • pp.223-240
    • /
    • 2006
  • Taking into account the geometrical and material nonlinearities, an ultimate behavior of reinforced concrete cooling tower shell in hyperbolic configuration is presented. The design wind pressures suggested in the guidelines of the US (ACI) and Germany (VGB), with or without the effect of internal suction, are employed in the analysis to examine the qualitative and quantitative characteristics of each design wind pressure. The geometrical nonlinearity is incorporated by the Green-Lagrange strain tensor. The nonlinear features of concrete, such as the nonlinear stress-strain relation in compression, the tensile cracking with the smeared crack model, an effect of tension stiffening, are taken into account. The biaxial stress state in concrete is represented by an improved work-hardening plasticity model. From the perspective of quality of wind pressures, the two guidelines are determined as highly correlated each other. Through the extensive analysis on the Niederaussem cooling tower in Germany, not only the ultimate load is determined but also the mechanism of failure, distribution of cracks, damage processes, stress redistributions, and mean crack width are examined.

An exact finite element for a beam on a two-parameter elastic foundation: a revisit

  • Gulkan, P.;Alemdar, B.N.
    • Structural Engineering and Mechanics
    • /
    • 제7권3호
    • /
    • pp.259-276
    • /
    • 1999
  • An analytical solution for the shape functions of a beam segment supported on a generalized two-parameter elastic foundation is derived. The solution is general, and is not restricted to a particular range of magnitudes of the foundation parameters. The exact shape functions can be utilized to derive exact analytic expressions for the coefficients of the element stiffness matrix, work equivalent nodal forces for arbitrary transverse loads and coefficients of the consistent mass and geometrical stiffness matrices. As illustration, each distinct coefficient of the element stiffness matrix is compared with its conventional counterpart for a beam segment supported by no foundation at all for the entire range of foundation parameters.

초등학교 수학과 교육과정에 근거한 도형영역 교수단위 추출 연구 (Extracting Teaching Units for the Area of Geometrical Figures Based on the Elementary School Mathematics Curriculum)

  • 강완;김현미
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제20권3호
    • /
    • pp.323-338
    • /
    • 2010
  • 이 연구는 강완, 김남준(2010) 이 Wittmann(1984)의 이론을 근거로 2007년 개정수학과 교육과정에 근거한 교수단위를 추출한 것과 동일한 방법을 통해 도형영역의 교수단위를 분석한 것이다. 교수단위는 수학에서 가르쳐야 할 내용들을 목적, 자료, 활동, 배경 등의 4 요소에 따라 알갱이 단위로 조직화 한 것이다. 본 연구에서는 2007년 개정수학과 교육과정 도형영역에서 추출된 교수단위의 특징과 제목을 분석하여 교수단위를 개념알기형, 개념적용형, 관계알기형으로 분류하여 교육적 의미를 살펴보았다. 또한, 도형영역의 교육과정연구에 어떻게 활용될 수 있는지 그 방안을 모색해 보았다. 앞으로 많은 수학연구자와 현장 교사의 참여로 교수단위가 보다 체계적으로 조직적으로 연구된다면 새로운 교육과정을 수립하는 데 중요한 자료로 활용될 수 있다.

  • PDF

Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure

  • Mehar, Kulmani;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • 제67권6호
    • /
    • pp.565-578
    • /
    • 2018
  • This research article reported the nonlinear finite solutions of the nonlinear flexural strength and stress behaviour of nano sandwich graded structural shell panel under the combined thermomechanical loading. The nanotube sandwich structural model is derived mathematically using the higher-order displacement polynomial including the full geometrical nonlinear strain-displacement equations via Green-Lagrange relations. The face sheets of the sandwich panel are assumed to be carbon nanotube-reinforced polymer composite with temperature dependent material properties. Additionally, the numerical model included different types of nanotube distribution patterns for the sandwich face sheets for the sake of variable strength. The required equilibrium equation of the graded carbon nanotube sandwich structural panel is derived by minimizing the total potential energy expression. The energy expression is further solved to obtain the deflection values (linear and nonlinear) via the direct iterative method in conjunction with finite element steps. A computer code is prepared (MATLAB environment) based on the current higher-order nonlinear model for the numerical analysis purpose. The stability of the numerical solution and the validity are verified by comparing the published deflection and stress values. Finally, the nonlinear model is utilized to explore the deflection and the stresses of the nanotube-reinforced (volume fraction and distribution patterns of carbon nanotube) sandwich structure (different core to face thickness ratios) for the variable type of structural parameter (thickness ratio, aspect ratio, geometrical configurations, constraints at the edges and curvature ratio) and unlike temperature loading.

GEOMETRICAL IMPLICATION OF THE CME EARTHWARD DIRECTION PARAMETER AND ITS COMPARISON WITH CONE MODEL PARAMETERS

  • Moon, Y.J.;Kim, R.S.;Cho, K.S.
    • 천문학회지
    • /
    • 제42권2호
    • /
    • pp.27-32
    • /
    • 2009
  • Recently, we suggested a CME earthward direction parameter as an important geoeffective parameter that has been demonstrated by front-side halo CME data. In this study, we present the geometrical implication of this parameter by comparing with the parameters from a CME cone model. Major results from this study can be summarized as follows. First, we derive an analytic relationship between the cone model parameters(the half angular width of a cone and the angle between the cone axis and the plane of sky) and the earthward direction parameter. Second, we demonstrate a close relationship between the earthward direction parameter and the cone axis angle using 32 front-side full halo CMEs. Third, we found that there is noticeable inconsistency between the cone axis angles estimated from the cone model fitting to the CMEs and from their associated flare positions, implying that the flare position should not be considered as a good earthward direction parameter. Finally we present several advantages of our earthward direction parameter in terms of the forecast of a geomagnetic storm based on CME parameters.

Static analysis of cutout microstructures incorporating the microstructure and surface effects

  • Alazwari, Mashhour A.;Abdelrahman, Alaa A.;Wagih, Ahmed;Eltaher, Mohamed A.;Abd-El-Mottaleb, Hanaa E.
    • Steel and Composite Structures
    • /
    • 제38권5호
    • /
    • pp.583-597
    • /
    • 2021
  • This article develops a nonclassical model to analyze bending response of squared perforated microbeams considering the coupled effect of microstructure and surface stress under different loading and boundary conditions, those are not be studied before. The corresponding material and geometrical characteristics of regularly squared perforated beams relative to fully filled beam are obtained analytically. The modified couple stress and the modified Gurtin-Murdoch surface elasticity models are adopted to incorporate the microstructure as well as the surface energy effects. The differential equations of equilibrium including the Poisson's effect are derived based on minimum potential energy. Exact closed form solution is obtained for bending behavior of the proposed model considering the classical and nonclassical boundary conditions for both uniformly distributed and concentrated loads. The proposed model is verified with results available in the literature. Influences of the microstructure length scale parameter, surface energy, beam thickness, boundary and loading conditions on the bending behavior of perforated microbeams are investigated. It is observed that microstructure and surface parameters are vital in investigation of the bending behavior of perforated microbeams. The obtained results are supportive for the design, analysis and manufacturing of perforated nanobeams that commonly used in nanoactuators, nanoswitches, MEMS and NEMS systems.