• Title/Summary/Keyword: Geometrical

Search Result 3,518, Processing Time 0.025 seconds

Finite element analysis for acoustic and temperature characteristics of a piezoelectric HIFU transducer at 10 MHz (10 MHz용 압전 HIFU 트랜스듀서의 음향 및 온도 특성에 대한 유한요소해석)

  • Jong-Ho Kim;Il-Gok Hong;Ho-Yong Shin;Hyo-Jun Ahn;Jong-In Im
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.3
    • /
    • pp.116-123
    • /
    • 2023
  • A high intensity focuses ultrasound (HIFU) is one of the emerging technologies in the biomedical field. The piezoelectric HIFU transducer is a device that utilizes the thermal energy generated by high ultrasound energy. Recently an operating frequency of the HIFU transducer is to expand above a 7 MHz. In this study, the acoustic pressures and temperature distributions in the tissue that generated by the HIFU transducer at 10 MHz were calculated with the finite element method. In addition, the pressure focusing characteristics of the device were analyzed. The geometrical variables are the piezomaterial thickness, lens shape, water height, and film thickness. The results shown that the acoustic pressure increased and saturated gradually when the height/radius (HL/RL) ratio of the lens increased. Moreover, the focal area was gradually decreases with HL/RL ratio of the lens. In case of the optimized HIFU transducer, the maximum pressure and temperature were analyzed about 19 MPa and 65℃ respectively. And the -3 dB focused distances in the axial and lateral direction are around 2.3 mm and 0.23 mm respectively.

Dead Layer Thickness and Geometry Optimization of HPGe Detector Based on Monte Carlo Simulation

  • Suah Yu;Na Hye Kwon;Young Jae Jang;Byungchae Lee;Jihyun Yu;Dong-Wook Kim;Gyu-Seok Cho;Kum-Bae Kim;Geun Beom Kim;Cheol Ha Baek;Sang Hyoun Choi
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.129-135
    • /
    • 2022
  • Purpose: A full-energy-peak (FEP) efficiency correction is required through a Monte Carlo simulation for accurate radioactivity measurement, considering the geometrical characteristics of the detector and the sample. However, a relative deviation (RD) occurs between the measurement and calculation efficiencies when modeling using the data provided by the manufacturers due to the randomly generated dead layer. This study aims to optimize the structure of the detector by determining the dead layer thickness based on Monte Carlo simulation. Methods: The high-purity germanium (HPGe) detector used in this study was a coaxial p-type GC2518 model, and a certified reference material (CRM) was used to measure the FEP efficiency. Using the MC N-Particle Transport Code (MCNP) code, the FEP efficiency was calculated by increasing the thickness of the outer and inner dead layer in proportion to the thickness of the electrode. Results: As the thickness of the outer and inner dead layer increased by 0.1 mm and 0.1 ㎛, the efficiency difference decreased by 2.43% on average up to 1.0 mm and 1.0 ㎛ and increased by 1.86% thereafter. Therefore, the structure of the detector was optimized by determining 1.0 mm and 1.0 ㎛ as thickness of the dead layer. Conclusions: The effect of the dead layer on the FEP efficiency was evaluated, and an excellent agreement between the measured and calculated efficiencies was confirmed with RDs of less than 4%. It suggests that the optimized HPGe detector can be used to measure the accurate radioactivity using in dismantling and disposing medical linear accelerators.

A Study on Friction Anisotropy between Sand and Surface Asperities of Plate Using Modified Direct Shear Test (수정된 직접 전단 시험기를 이용한 모래와 표면 돌출부를 갖는 플레이트 사이의 마찰 이방성에 대한 연구)

  • Lee, Seung-Hun;Chong, Song-Hun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.2
    • /
    • pp.29-38
    • /
    • 2022
  • The friction anisotropy of shear resistance can be selectively used in geo-structures. For example, larger axially loaded deep foundation, soil nails, and tiebacks increase load carrying capacity due to induced large shear resistance while pile penetration and soil sampling produce minimal shear resistance. Previous studies confirmed direction-dependent shear resistance induced by interface between soil and surface asperity of plate inspired by geometrical shape of snake scale. The aim of this paper is to quantitatively evaluate interface friction angle with different surface asperities. Using the modified direct shear test, a total of 51 cases, which sand are prepared at the relative density of 40%, are conduced including 9 plates, two shear direction (shearing direction against the height of surface asperity is increased or decreased during shearing test), and three initial vertical stress (100 kPa, 200 kPa, 300 kPa). Experimental results show that shear stress is increased with higher height of surface asperity, shorter length of surface asperity, and the shearing direction that the height of surface asperity increases. Also, interface friction angle is decreased with larger surface asperity ratio, and shearing direction with increasing height of surface asperity produces larger interface friction angle regardless of the surface asperity ratio.

Experimental Investigation of Aerodynamic Force Coefficients and Flutter Derivatives of Bridge Girder Sections (교량단면의 공기력계수 및 플러터계수에 관한 실험적 연구)

  • Cho, Jae-Young;Lee, Hak-Eun;Kim, Young-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.887-899
    • /
    • 2006
  • The aim of this study is to investigate a correlation between fundamental data on aerodynamic characteristics of bridge girder cross-sections, such as aerodynamic force coefficients and flutter derivatives, and their aerodynamic behaviour. The section model tests were carried out in three stages. In the first stage, seven deck configurations were studied, namely; Six 2-edge girders and one box girder. In this stage, changes in aerodynamic force coefficients due to geometrical shape of girders, incidence angle of flow, wind directions and turbulence intensities were studied by static section model tests. In the second stage, the dynamic section model tests were carried out to investigate the relativity of static coefficients to dynamic responses. And finally, the two-dimensional (lift-torsion) aerodynamic derivatives of three bridge deck configurations were investigated by dynamic section model tests. The aerodynamic derivatives can be best described as a representation of the aerodynamic damping and the aerodynamic stiffness provided by the wind for a given deck geometry. The method employed here to extract these unsteady aerodynamic properties is known as the initial displacement technique. It involves the measurement of the decay in amplitude with time of an initial displacement of the deck in heave and torsion, for various wind speeds, in smooth flow. It is suggested that the proposed aerodynamic force coefficients and flutter derivatives of bridge girder sections will be potentially useful for the aeroelastic analysis and buffeting analysis.

A Review of Deep Learning-based Trace Interpolation and Extrapolation Techniques for Reconstructing Missing Near Offset Data (가까운 벌림 빠짐 해결을 위한 딥러닝 기반의 트레이스 내삽 및 외삽 기술에 대한 고찰)

  • Jiho Park;Soon Jee Seol;Joongmoo Byun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.185-198
    • /
    • 2023
  • In marine seismic surveys, the inevitable occurrence of trace gaps in the near offset resulting from geometrical differences between sources and receivers adversely affects subsequent seismic data processing and imaging. The absence of data in the near-offset region hinders accurate seismic imaging. Therefore, reconstructing the missing near-offset information is crucial for mitigating the influence of seismic multiples, particularly in the case of offshore surveys where the impact of multiple reflections is relatively more pronounced. Conventionally, various interpolation methods based on the Radon transform have been proposed to address the issue of the nearoffset data gap. However, these methods have several limitations, leading to the recent emergence of deep-learning (DL)-based approaches as alternatives. In this study, we conducted an in-depth analysis of two representative DL-based studies to scrutinize the challenges that future studies on near-offset interpolation must address. Furthermore, through field data experiments, we precisely analyze the limitations encountered when applying previous DL-based trace interpolation techniques to near-offset situations. Consequently, we suggest that near-offset data gaps must be approached by extrapolation rather than interpolation.

Effect of the initial imperfection on the response of the stainless steel shell structures

  • Ali Ihsan Celik;Ozer Zeybek;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.705-720
    • /
    • 2024
  • Analyzing the collapse behavior of thin-walled steel structures holds significant importance in ensuring their safety and longevity. Geometric imperfections present on the surface of metal materials can diminish both the durability and mechanical integrity of steel shells. These imperfections, encompassing local geometric irregularities and deformations such as holes, cavities, notches, and cracks localized in specific regions of the shell surface, play a pivotal role in the assessment. They can induce stress concentration within the structure, thereby influencing its susceptibility to buckling. The intricate relationship between the buckling behavior of these structures and such imperfections is multifaceted, contingent upon a variety of factors. The buckling analysis of thin-walled steel shell structures, similar to other steel structures, commonly involves the determination of crucial material properties, including elastic modulus, shear modulus, tensile strength, and fracture toughness. An established method involves the emulation of distributed geometric imperfections, utilizing real test specimen data as a basis. This approach allows for the accurate representation and assessment of the diversity and distribution of imperfections encountered in real-world scenarios. Utilizing defect data obtained from actual test samples enhances the model's realism and applicability. The sizes and configurations of these defects are employed as inputs in the modeling process, aiding in the prediction of structural behavior. It's worth noting that there is a dearth of experimental studies addressing the influence of geometric defects on the buckling behavior of cylindrical steel shells. In this particular study, samples featuring geometric imperfections were subjected to experimental buckling tests. These same samples were also modeled using Finite Element Analysis (FEM), with results corroborating the experimental findings. Furthermore, the initial geometrical imperfections were measured using digital image correlation (DIC) techniques. In this way, the response of the test specimens can be estimated accurately by applying the initial imperfections to FE models. After validation of the test results with FEA, a numerical parametric study was conducted to develop more generalized design recommendations for the stainless-steel shell structures with the initial geometric imperfection. While the load-carrying capacity of samples with perfect surfaces was up to 140 kN, the load-carrying capacity of samples with 4 mm defects was around 130 kN. Likewise, while the load carrying capacity of samples with 10 mm defects was around 125 kN, the load carrying capacity of samples with 14 mm defects was measured around 120 kN.

Development of Radiation Dose Assessment Algorithm for Arbitrary Geometry Radiation Source Based on Point-kernel Method (Point-kernel 방법론 기반 임의 형태 방사선원에 대한 외부피폭 방사선량 평가 알고리즘 개발)

  • Ju Young Kim;Min Seong Kim;Ji Woo Kim;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.275-282
    • /
    • 2023
  • Workers in nuclear power plants are likely to be exposed to radiation from various geometrical sources. In order to evaluate the exposure level, the point-kernel method can be utilized. In order to perform a dose assessment based on this method, the radiation source should be divided into point sources, and the number of divisions should be set by the evaluator. However, for the general public, there may be difficulties in selecting the appropriate number of divisions and performing an evaluation. Therefore, the purpose of this study is to develop an algorithm for dose assessment for arbitrary shaped sources based on the point-kernel method. For this purpose, the point-kernel method was analyzed and the main factors for the dose assessment were selected. Subsequently, based on the analyzed methodology, a dose assessment algorithm for arbitrary shaped sources was developed. Lastly, the developed algorithm was verified using Microshield. The dose assessment procedure of the developed algorithm consisted of 1) boundary space setting step, 2) source grid division step, 3) the set of point sources generation step, and 4) dose assessment step. In the boundary space setting step, the boundaries of the space occupied by the sources are set. In the grid division step, the boundary space is divided into several grids. In the set of point sources generation step, the coordinates of the point sources are set by considering the proportion of sources occupying each grid. Finally, in the dose assessment step, the results of the dose assessments for each point source are summed up to derive the dose rate. In order to verify the developed algorithm, the exposure scenario was established based on the standard exposure scenario presented by the American National Standards Institute. The results of the evaluation with the developed algorithm and Microshield were compare. The results of the evaluation with the developed algorithm showed a range of 1.99×10-1~9.74×10-1 μSv hr-1, depending on the distance and the error between the results of the developed algorithm and Microshield was about 0.48~6.93%. The error was attributed to the difference in the number of point sources and point source distribution between the developed algorithm and the Microshield. The results of this study can be utilized for external exposure radiation dose assessments based on the point-kernel method.

Evaluation of Contralateral Breast Surface Dose in FIF (Field In Field) Tangential Irradiation Technique for Patients Undergone Breast Conservative Surgery (보존적 유방절제 환자의 방사선치료 시 종속조사면 병합방법에 따른 반대편 유방의 표면선량평가)

  • Park, Byung-Moon;Bang, Dong-Wan;Bae, Yong-Ki;Lee, Jeong-Woo;Kim, You-Hyun
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.401-406
    • /
    • 2008
  • The aim of this study is to evaluate contra-lateral breast (CLB) surface dose in Field-in-Field (FIF) technique for breast conserving surgery patients. For evaluation of surface dose in FIF technique, we have compared with other techniques, which were open fields (Open), metal wedge (MW), and enhanced dynamic wedge (EDW) techniques under same geometrical condition and prescribed dose. The three dimensional treatment planning system was used for dose optimization. For the verification of dose calculation, measurements using MOSFET detectors with Anderson Rando phantom were performed. The measured points for four different techniques were at the depth of 0cm (epidermis) and 0.5cm bolus (dermis), and spacing toward 2cm, 4cm, 6cm, 8cm, 10cm apart from the edge of tangential medial beam. The dose calculations were done in 0.25cm grid resolution by modified Batho method for inhomogeneity correction. In the planning results, the surface doses were differentiated in the range of $19.6{\sim}36.9%$, $33.2{\sim}138.2%$ for MW, $1.0{\sim}7.9%$, $1.6{\sim}37.4%$ for EDW, and for FIF at the depth of epidermis and dermis as compared to Open respectively. In the measurements, the surface doses were differentiated in the range of $11.1{\sim}71%$, $22.9{\sim}161%$ for MW, $4.1{\sim}15.5%$, $8.2{\sim}37.9%$ for EDW, and 4.9% for FIF at the depth of epidermis and dermis as compared to Open respectively. The surface doses were considered as underestimating in the planning calculation as compared to the measurement with MOSFET detectors. Was concluded as the lowest one among the techniques, even if it was compared with Open method. Our conclusion could be stated that the FIF technique could make the optimum dose distribution in Breast target, while effectively reduce the probability of secondary carcinogenesis due to undesirable scattered radiation to contra-lateral breast.

  • PDF

Effect of different pattern size and pattern shape on castability of commercially pure titanium (납형의 크기와 형태가 티타늄의 주조성에 미치는 영향)

  • Seo, Yoon-Jeong;Oh, Gye-Jeong;Lee, Hyo-Il;Shin, Yoo-Jin;Kim, Hong-Joo;Park, Sang-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.4
    • /
    • pp.261-268
    • /
    • 2013
  • Purpose: The purpose of this study was to investigate the effect of geometrically different wax pattern shapes and sizes on the castability of Grade2 Cp-Ti (commercially pure titanium). Materials and methods: Total of 40 mesh wax pattern ($61mm{\times}24mm$, 207 grids), ($61mm{\times}17mm$, 138 grids) was cast in this experiment. Depending on the geometrical shape of the wax pattern, 8 groups was organized; Flat, Semicircular, Horse-shoe and V-shape, each consisting 5 samples. Runner-bar sprue was used in all patterns. The number of completely cast grid in wax pattern served as a measure for the castability of comercially pure titanium. Results: The mean value of square count in each group was as followed; 133.20 squares in group SS (96.52%), 132.40 squares in group SH (95.94%), 132.00 squares in group SF (95.65%), 127.60 squares in SV (91.43%), 198.60 squares in group LF (95.94%), 197.80 squares in group LV (95.56%), 196.40 squares in group LS (94.88%), and 188.00 squares in group LH (90.82%). Conclusion: Within the limitations of this study the results indicate that there were no sttistically significant difference in castability of titanium regarding wax pattern shape (P>.05). However, Small size wax patterns were showing the noticeable castability more than Large size pattern.

Development of the Whole Body 3-Dimensional Topographic Radiotherapy System (3차원 전신 정위 방사선 치료 장치의 개발)

  • Jung, Won-Kyun;Lee, Byung-Yong;Choi, Eun-Kyung;Kim, Jong-Hoon;An, Seung-Do;Lee, Seok;Min, Chul-Ki;Park, Cham-Bok;Jang, Hye-Sook
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.63-71
    • /
    • 1999
  • For the purpose of utilization in 3-D conformal radiotherapy and whole body radiosurgery, the Whole Body 3-Dimensional Topographic Radiation Therapy System has been developed. Whole body frame was constructed in order to be installed on the couch. Radiopaque catheters were engraved on it for the dedicated coordinate system and a MeV-Green immobilizer was used for the patient setup by the help of side panels and plastic rods. By designing and constructing the whole body frame in this way, geometrical limitation to the gantry rotation in 3-D conformal radiotherapy could be minimized and problem which radiation transmission may be altered in particular incident angles was solved. By analyzing CT images containing information of patient setup with respect to the whole body frame, localization and coordination of the target is performed so that patient setup error may be eliminated between simulation and treatment. For the verification of setup, the change of patient positioning is detected and adjusted in order to minimize the setup error by means of comparison of the body outlines using 3 CCTV cameras. To enhance efficiency of treatment procedure, this work can be done in real time by watching the change of patient setup through the monitor. The method of image subtraction in IDL (Interactive Data Language) was used to visualize the change of patient setup. Rotating X-ray system was constructed for detecting target movement due to internal organ motion. Landmark screws were implanted either on the bones around target or inside target, and variation of target location with respect to markers may be visualized in order to minimize internal setup error through the anterior and the lateral image information taken from rotating X-ray system. For CT simulation, simulation software was developed using IDL on GUI(Graphic User Interface) basis for PC and includes functions of graphic handling, editing and data acquisition of images of internal organs as well as target for the preparation of treatment planning.

  • PDF