• Title/Summary/Keyword: Geometric-based Design

Search Result 768, Processing Time 0.026 seconds

Manipulating Geometry Instances in an STEP-based OODB from Commercial CAD Systems (상업용 CAD에서 STEP 기반 객체지향 데이터베이스 내부의 형상 인스턴스 검색 및 수정)

  • Kim, Junhwan;Han, Soonhung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.4
    • /
    • pp.435-442
    • /
    • 2002
  • It is difficult to access and share design data among heterogeneous CAD systems. Usually, different CAD systems exchange the design data using a neutral format such as IGES or STEP. A prototype CAD system which uses a geometric kernel and a commercial database management system has been implemented. The prototype system used the Open Cascade geometric kernel and the commercial object-oriented database ObjectStore. STEP provides the database schema. The database can be accessed from commercial CAD systems such as SolidWorks or Unigraphics. The data access module from a commercial CAD system is developed with the CAD system's native API, ObjectStore API functions, and ActiveX.

사출성형 제품의 총합설계 시스템 구축에 관한 연구

  • 허용정;김태수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.281-285
    • /
    • 2001
  • The design of injection molded polymeric parts has been done empirically, since it requires profound knowledge about the moldability and causal effects on the properties of the part, which are not available to designers through current CAD systems. An interactive computer-based design system is developed in order to realize the concept of rational design for the productivity and quality of mold making. The knowledge-based CAD system is constructed by adding the knowledge-base module for mold feature synthesis and appropriate CAE programs for mold design analysis in order to provide designers, at the initial design stage, with comprehensive process knowledge for feature synthesis performance analysis and feature-based geometric modeling. A knowledge-based CAD system is a new tool which enables the concurrent design with integrated and balanced design decisions at the initial design stage of injection molding.

Shape Design Sensitivity Analysis using Isogeometric Approach (CAD 형상을 활용한 설계 민감도 해석)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.577-582
    • /
    • 2007
  • A variational formulation for plane elasticity problems is derived based on an isogeometric approach. The isogeometric analysis is an emerging methodology such that the basis functions in analysis domain arc generated directly from NURBS (Non-Uniform Rational B-Splines) geometry. Thus. the solution space can be represented in terms of the same functions to represent the geometry. The coefficients of basis functions or the control variables play the role of degrees-of-freedom. Furthermore, due to h-. p-, and k-refinement schemes, the high order geometric features can be described exactly and easily without tedious re-meshing process. The isogeometric sensitivity analysis method enables us to analyze arbitrarily shaped structures without re-meshing. Also, it provides a precise construction method of finite element model to exactly represent geometry using B-spline base functions in CAD geometric modeling. To obtain precise shape sensitivity, the normal and curvature of boundary should be taken into account in the shape sensitivity expressions. However, in conventional finite element methods, the normal information is inaccurate and the curvature is generally missing due to the use of linear interpolation functions. A continuum-based adjoint sensitivity analysis method using the isogeometric approach is derived for the plane elasticity problems. The conventional shape optimization using the finite element method has some difficulties in the parameterization of boundary. In isogeometric analysis, however, the geometric properties arc already embedded in the B-spline shape functions and control points. The perturbation of control points in isogeometric analysis automatically results in shape changes. Using the conventional finite clement method, the inter-element continuity of the design space is not guaranteed so that the normal vector and curvature arc not accurate enough. On tile other hand, in isogeometric analysis, these values arc continuous over the whole design space so that accurate shape sensitivity can be obtained. Through numerical examples, the developed isogeometric sensitivity analysis method is verified to show excellent agreement with finite difference sensitivity.

  • PDF

Design and Implementation of Web Apps that Automatically Convert Floor Plan by Detecting Geometric Shapes (도형 검출을 통한 건축 평면도 자동 변환 웹앱 설계 및 구현)

  • Son, Dayeon;Kim, Doyeong;Shin, Dongho;Wang, Tae-su;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.225-228
    • /
    • 2022
  • The method of calculating the architectural design cost of the Korean Society of Architecture Policy considers the time spent during the design period. Therefore, faster design times can reduce design costs. As a result of a survey of students majoring in architecture, they felt tiredness from repeated floor plan drawings and difficulties in that there were many things to consider when floor plan drawing. In this paper, we implement a program that can automatically convert sketches into standardized floor plans during the architectural design process and a web app for user convenience. In the proposed method, when a user registers a sketch image through a web app, the program separates the space in the drawing through geometric shapes detection. Based on the dimensions and spatial information shown in the sketch, the outer and inner walls are displayed and the appropriate furniture is placed in the space. Through the proposed method, the design cost can be expected to be reduced by reducing the time of the drawing process in the architectural design stage, and 95.2% of architectural students expressed their intention to use the program.

  • PDF

A Study on Generation and Types of Mandelbrot Fractal Images (만델브로 프랙탈 이미지의 생성 및 형태 연구)

  • Lim, Mi-Jeong;Cho, Hyong-Je
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.217-222
    • /
    • 2015
  • As a Creative Director one is always looking forward to formative elements of new design. The fractal image that is generated by a computer program instead of by hand suggests a geometric pattern that can grafted into a new design for each field. In this paper we look for information about the creation of a Mandelbrot fractal image that is being utilized in the design of various sectors like textile design, architectural design, exhibition design from pure painting by convergence of both technology and art composites. And it analyses about forms based on the formative principle of creation images.

A Study on Fashion Designs Applying Patchwork Technique and the Characteristics of Mondrian's Works (패치워크 기법과 몬드리안의 작품 특성을 응용한 패션 디자인 연구)

  • Seo, Yoon-Ju;Shon, Young-Mi
    • The Research Journal of the Costume Culture
    • /
    • v.14 no.4
    • /
    • pp.670-683
    • /
    • 2006
  • Such trend offers new fashion designs as a formative art with creative spontaneity. The purpose of this study is to seek to work out fashion design methods whereby fashions can be developed into an art form embracing handicraft premium textures, geometric formativeness and traditional beauty so as to satisfy the individualist expression desires of modern people who pursue practicality, originality, and beauty of simplicity. This art form also allows new images to be expressed. The corresponding methods studied include the space and technique of patchwork that can create artistry and aesthetic functionality into differentiated levels of images, and geometric ion from Mondrian' works. Fashion designs based on patchwork technique and the characteristics of Mondrian's works reveal that the patchwork technique using diverse materials is an artistic technique with high handicraft value. This technique provides new value to traditional aesthetic materials of clothing, and that Mondrian's unique designs are very effective in developing new fashion designs because they provide artistry and unique effects to modern fashion expression.

  • PDF

Geometric Feature Recognition Directly from Scanned Points using Artificial Neural Networks (신경회로망을 이용한 측정 점으로부터 특징형상 인식)

  • 전용태;박세형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.176-184
    • /
    • 2000
  • Reverse engineering (RE) is a process to create computer aided design (CAD) models from the scanned data of an existing part acquired using 3D position scanners. This paper proposes a novel methodology of extracting geometric features directly from a set of 3D scanned points, which utilizes the concepts of feature-based technology and artificial neural networks (ANNs). The use of ANN has enabled the development of a flexible feature-based RE application that can be trained to deal with various features. The following four main tasks were mainly investigated and implemented: (1) Data reduction; (2) edge detection; (3) ANN-based feature recognition; (4) feature extraction. This approach was validated with a variety of real industrial components. The test results show that the developed feature-based RE application proved to be suitable for reconstructing prismatic features such as block, pocket, step, slot, hole, and boss, which are very common and crucial in mechanical engineering products.

  • PDF

Transparent Plate Thickness Measurement Approach Using a Chromatic Confocal Sensor Based on a Geometric Phase Lens (기하 위상 렌즈 기반의 색공초점 센서를 이용한 투명 물질 두께 측정 연구)

  • Song, Min Kwan;Park, Hyo Mi;Joo, Ki-Nam
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.317-323
    • /
    • 2022
  • In this investigation, we describe a chromatic confocal sensor based on a geometric phase lens for measuring the thicknesses of transparent plates. In order to design a compact sensor, a geometric phase lens, which has diffractive and polarizing characteristics, is used as a device to generate chromatic aberration, and a fiber optic module is adopted. The systematic error of the sensor is reduced with wavelength peak detection by Gaussian curve fitting and the common error compensation obtained by the repeatedly consecutive experimental results. An approach to calculate the plate thickness is derived and verified with sapphire and BK7 plates. Because of the simple and compact design of the proposed sensor with rapid measurement capability, it is expected to be widely used in thickness measurements of transparent plates as an alternative to traditional approaches.

Design of Reactor Head Structure Assembly Using Axiomatic Design (설계공리를 이용한 원자로상부구조물의 설계)

  • Choi, Woo-Seok;Lee, Gyu-Mahn;Kim, Tae-Wan;Kim, Jong-In
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.300-304
    • /
    • 2007
  • The reactor head structure assembly(RHSA) is the structure located on the reactor assembly. The purpose of the assembly is providing interface location for cables, preventing pipe whips, prohibiting instruments from becoming missiles, and restraining CEDMs' horizontal motion. On the RHSA, reactor disconnect panels(RDP) are installed. The installation location of RDP is to be decided to minimize the geometric interface with other components. Since the neighborhood of RHSA is crowded due to many connectors and cables, it is necessary to find the good design of RHSA to make an intricate situation attenuated and the required function maintained. The geometric shape and overall configuration of RHSA are determined by axiomatic design approach. The FRs of RHSA are specified and the corresponding DPs are found to satisfy FRs in sequence. The finite element analysis is carried out based on the result of the axiomatic design to evaluate the structural integrity.

  • PDF

On the Volumetric Balanced Variation of Ship Forms (체적 밸런스 선형변환방법에 대한 연구)

  • Kim, Hyun-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.1-7
    • /
    • 2013
  • This paper aims at contributing to the field of ship design by introducing new systematic variation methods for ship hull forms. Hull form design is generally carried out in two stages. The first is the global variation considering the sectional area curve. Because the geometric properties of a sectional area curve have a decisive effect on the global hydrodynamic properties of ships, the design of a sectional area curve that satisfies various global design conditions, e.g., the displacement, longitudinal center of buoyancy, etc., is important in the initial hull form design stage. The second stage involves the local design of section forms. Section forms affect the local hydrodynamic properties, e.g., the local pressure in the fore- and aftbody. This paper deals with a new method for the systematic variation of sectional area curves. The longitudinal volume distribution of a ship depends on the sectional area curve, which can geometrically be controlled using parametric variation and a variation that uses the modification function. Based on these methods, we suggest a more generalized method in connection with the derivation of the lines for a new design compared to those for similar ships. This is the so-called the volumetric balanced variation (VOB) method for ship forms using a B-spline modification function and an optimization technique. In this paper the global geometric properties of hull forms are totally controlled by the form parameters. We describe the new method and some application examples in detail.