• 제목/요약/키워드: Geometric surface area(GSA)

검색결과 2건 처리시간 0.015초

촉매를 고려한 배압 계산에서의 인자 결정 연구 (Parameter Study of Exhaust Pressure in Catalytic Converter)

  • 이원근;임효재
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.77-82
    • /
    • 2003
  • A parametric study was conducted on pressure drop in a catalytic converter for automobile. In this work, we proposed a new pressure drop relation which contains the various parameters needed to calculate and got a few results. In a monolith of catalyst, the flow originally turbulent flow changes to laminar flow and thus the pressure drop through the monolith is linearly proportional to the velocity. The exhaust pressure is doubly affected by the increase of mean velocity and length when we decrease the diameter of monolith while the volume keeps constant. Theoretical parameters such as $\alpha$ and $\beta$ are suggested to use as a reference value when there is no a experimental data. Especially in the part load test, these values should be modified to consider the property change of exhaust gas.

냉간시동시 자동차용 저온활성촉매의 성능 향상을 위한 수치적 설계 (Numerical Design of Light-off Auto-Catalyst for Reducing Cold-Start Emissions)

  • 정수진;김우승
    • 대한기계학회논문집B
    • /
    • 제24권9호
    • /
    • pp.1264-1276
    • /
    • 2000
  • Light-off catalyst has been used for minimization of cold-start emissions. Improved cold-start performance of light-off catalyst needs the optimal design in terms of flow distribution, geometric surface area, precious metal loading, cell density and space velocity. In this study, these influential factors are numerically investigated using integrated numerical technique by considering not only 3-D fluid flow but also heat and mass transfer with chemical reactions. The present results indicate that uneven catalyst loading of depositing high active catalyst at upstream of monolith is beneficial during warm-up period but its effect is severely deteriorated when the space velocity is above 100,000 $hr^{-1}$ To maximize light-off performance, this study suggests that 1) a light-off catalyst be designed double substrate type; 2) the substrate with high GSA and high PM loading at face be placed at the front monolith; and 3) the cell density of the rear monolith be lower to reduce the pressure drop.