• Title/Summary/Keyword: Geometric standard deviation

Search Result 101, Processing Time 0.023 seconds

흡입독성 연구에 이용될 0.25% 염화카드뮴 네뷸라이징 용액 에어로졸의 입경 (Particle Size of Aerosol from 0.25% Cadmium Chloride Nebulizing Solution for Inhalation Toxicology Study)

  • 정재열;이기남
    • 동의생리병리학회지
    • /
    • 제17권5호
    • /
    • pp.1257-1263
    • /
    • 2003
  • The modified engineering methodology and the modified electronic circuit in classical ultrasonic principles were applied to ultrasonic aerosol nebulizer for inhalation toxicology study of cadmium aerosol. 1532.96ppm Cd nebulizing solution was used to generate cadmium aerosol for particle size analysis with the modifying source and inlet temperatures. The results of particle size analysis for cadmium aerosol were as following. The highest particle counting for source temperature 20℃ was 399.75 × 10² in inlet temperature 100℃ and particle diameter 0.75㎛. The highest particle counting for source temperature 50℃ was 399.70 × 10² in inlet temperature 50℃ and particle diameter 0.75㎛. The highest particle counting for source temperature 70℃ was 411.14 × 10² in inlet temperature 100℃ and particle diameter 0.75㎛. The ranges of geometric mean diameter were 0.74-0.79㎛ in source temperature 20℃, 0.65-0.72㎛ in source temperature 50℃, and 0.65-0.80㎛ in source temperature 70℃. The smallest geometric mean diameter was 0.65㎛ in source temperature 50, 70℃ and inlet temperature 20, 50℃, and the largest geometric mean diameter was 0.80㎛ in source temperature 70℃ and inlet temperature 100℃. The ranges of geometric standard deviation were 1.71-1.80 in source temperature 20℃, 1.27-1.61 in source temperature 50℃, and 1.27-2.29 in source temperature 70℃. The lowest geometric standard deviation was 1.27 in source temperature 50, 70℃ and inlet temperature 20, 50℃, and the highest geometric standard deviation was 2.29 in source temperature 70℃ and inlet temperature 100℃. Generated aerosol for cadmium inhalation toxicology study was polydisperse aerosol with the above geometric standard deviation 1.2. The ranges of mass median diameter(MMD) were 1.75-2.25㎛ in source temperature 20℃, 1.27-1.61㎛ in source temperature 50℃, and 1.27-2.29㎛ in source temperature 70℃. The smallest MMD was 1.27㎛ in source temperature 50, 70℃ and inlet temperature 20, 50℃, and the largest MMD was 2.29㎛ in source temperature 70℃ and inlet temperature 100℃. Cadmium chloride concentration in nebulizing solution affected the particle size and distribution of cadium aerosol in air. MMO for inhalation toxicology testing in OECD and EU is less than 3㎛ and EPA guidance is less than 4㎛. In our results, in source temperatures of 20, 50, 70℃, and inlet temperatures of 20, 50, 100, 150, 200, 250℃ were conformed to the those guidance.

입도분포계수를 이용한 사질토의 최대건조단위중량 예측 (Prediction of Maximum Dry Unit Weight of Sandy Soils From Grain-Size Distribution Parameters)

  • 송영우;진명섭;홍기남
    • 한국도로학회논문집
    • /
    • 제6권3호
    • /
    • pp.55-64
    • /
    • 2004
  • 최대건조단위중량은 노상토 재료 특성으로서 매우 중요한 인자이다. 최대건조단위중량을 예측하는 기존의 모델들은 많은 변수를 포함하고 있어 다소 복잡해 보인다 본 논문에서는 사질토의 최대건조단위중량을 예측할 수 있는 간편한 식을 제안하였다. 이를 위해 36개 시료를 체분석하여 입도분포를 구하고, 다짐시험 한 후 그 결과를 회귀 분석하였다. 제안식은 변수로 노상토의 기하평균과 기하표준편차 또는 입도분포계수를 포함한다. 제안식의 검증을 위해 전국16개 지역의 채취 시료에 대한 최대건조단위중량의 실측치와 예측치를 비교한 결과 잘 맞는 것으로 밝혀졌다.

  • PDF

국내외 판내부 지진기록을 이용한 한국 표준수평설계스펙트럼의 개발 (Development of Korean Standard Horizontal Design Spectrum Based on the Domestic and Overseas Intra-plate Earthquake Records)

  • 김재관;김정한;이진호;허태민
    • 한국지진공학회논문집
    • /
    • 제20권6호
    • /
    • pp.369-378
    • /
    • 2016
  • The design spectrum for Korea, which is known to belong to an intra-plate region, is developed from the ground motion records of the earthquakes occurred in Korea and overseas intra-plate regions. The horizontal spectrum is defined as geometric mean spectrum, GMRotI50. From the statistical analysis of the geometric mean spectra, a mean plus one standard deviation spectrum in lognormal distribution is obtained. Regression analysis is performed on this curve to determine the shape of spectrum including transition periods. The developed design spectrum is valid for the estimation both spectral acceleration and displacement.

입도분포를 이용한 투수계수의 예측 (Prediction of Hydraulic Conductivity from Gran-size Distribution Parameters)

  • Song, Young-Woo;Lee, In-Koo
    • 한국지반공학회논문집
    • /
    • 제18권3호
    • /
    • pp.5-12
    • /
    • 2002
  • 투수계수는 지반공학의 문제를 해결하는 데 중요한 인자의 하나이다. 그렇지만 현장이나 실험실에서 투수계수를 구하려면 시간과 비용이 많이 든다. 이 논문에서는 입도분포를 반영하는 통계적인 계수를 이용하여 모래의 투수계수를 예측할 수 있는 식을 제안하였다. 이를 위해 36가지 입도분포의 시료를 통계적인 방법으로 조성하여 투수시험을 한 후 그 결과를 회귀분석하였다. 제안식은 변수로서 체분석시험에서 구한 모래 입경의 기하평균과 기하표준편차 또는 D_{10},D_{50},D_{60} 등과 같은 입도분포계수를 사용한다. 제안된 식의 성능을 검증하기 위해 국내 20개 지역에서 채취한 시료에 대한 투수계수의 예측치와 실측치를 비교한 결과 비교적 잘 맞는 것으로 판명되였다. 또한 제안식의 성능이 Hazen 등 다른 연구자들의 식과 비교되었다.

일부 제련 및 리사지 사업장에서 공기중 납 노출농도의 변화 (The change of air lead concentrations in litharge making and smelting industries)

  • 최재욱;김남수;조광성;함정오;이병국
    • 한국산업보건학회지
    • /
    • 제20권1호
    • /
    • pp.10-18
    • /
    • 2010
  • To provide necessary information for future environmental monitoring of smelting and litharge making industries in Korea, environmental monitoring dataset of air lead concentration of 4 lead industries(1 primary smelting, 2 secondary smelting and 1 litharge making industry) were analyzed from 1994 to 2007. Data were compared using geometric mean and standard deviation with minimum and maximum values according to year of measurement, type of lead industries and type of operation of lead industries. The geometric mean and standard deviation of air concentration for a total of 1140 samples in all lead industries for overall 14 years were 70.7${\mu}g/m^3$ and 5.51 with minimum of 1${\mu}g/m^3$ and maximum of 9,185 ${\mu}g/m^3$. The overall geometric means of air concentration were above the permissible exposure levels(PEL) until year of 2001 and thereafter they were remained at the level of half of PEL. The geometric means of primary smelting, secondary smelting and litharge making industry for overall 14 years were 21.7${\mu}g/m^3$(number of samples: 353), 82.5${\mu}g/m^3$(number of samples: 357) and 164.2 ${\mu}g/m^3$(number of samples: 430) respectively. In primary smelting industry, the highest geometric mean air concentration was 35.4 ${\mu}g/m^3$ in the secondary smelting operation; followed by casting operation (24.9 ${\mu}g/m^3$) and melting operation (14.9 ${\mu}g/m^3$), respectively. On the other hand, in secondary smelting industries, the highest geometric mean air concentration was 125.4${\mu}g/m^3$ in melting operation; followed by casting operation (90.5${\mu}g/m^3$) and pre-treatment operation (43.4${\mu}g/m^3$), respectively. However, in litharge making industries, there were no significant differences of geometric mean air concentrations between litharge operation and stabilizer operation. The proportion of over PEL (50${\mu}g/m^3$) was highest in litharge industry and followed by secondary smelting industries. However The proportions of over PEL(${\mu}g./m^3.$) were decreased by the years of environmental monitoring. The significant reduction of mean air lead concentration since year of 2000 was observed due to more active environmental engineering control and new introduction of new operation in manufacturing process, but may be also influenced by non-engineering method such as reduction of operation hours or reduction of exposure time during actual environmental measurement by industrial hygienist according to more strict enforcement of occupational and safety law by the government.

2016년 경주지진 스펙트럼과 한국표준설계스펙트럼의 비교 (Response Spectra of 2016 Gyeongju Earthquake and Comparison with Korean Standard Design Spectra)

  • 김재관;김정한;이진호;허태민
    • 한국지진공학회논문집
    • /
    • 제21권6호
    • /
    • pp.277-286
    • /
    • 2017
  • On September 12, 2016, Gyeongju earthquake occurred. Its local magnitude was announced to be $M_L=5.8$ by Korea Meteorological Administration (KMA). Ground motion data recorded at KMA, EMC and KERC stations was obtained from their data bases. From the data, horizontal and vertical response spectra, and V/H ratio were calculated. The horizontal spectrum was defined as geometric mean spectrum, GMRotI50. From the statistical analysis of the geometric mean spectra, a mean plus one standard deviation spectrum in lognormal distribution is obtained. Regression analysis is performed on this curve to determine the shape of spectrum including transition periods. Applying the same procedure, the shape and transition periods of vertical spectrum was obtained. These results were compared with the Korean standard design spectra, which were developed from domestic and overseas intraplate earthquake records. The response spectra of Gyeongju earthquake were found to be almost identical with the newly proposed design spectra. Even the V/H ratios showed good agreement. These results confirmed that the method adopted when developing the standard design spectra were valid and the developed design spectra were reliable.

Adjustment of Control Limits for Geometric Charts

  • Kim, Byung Jun;Lee, Jaeheon
    • Communications for Statistical Applications and Methods
    • /
    • 제22권5호
    • /
    • pp.519-530
    • /
    • 2015
  • The geometric chart has proven more effective than Shewhart p or np charts to monitor the proportion nonconforming in high-quality processes. Implementing a geometric chart commonly requires the assumption that the in-control proportion nonconforming is known or accurately estimated. However, accurate parameter estimation is very difficult and may require a larger sample size than that available in practice in high-quality process where the proportion of nonconforming items is very small. Thus, the error in the parameter estimation increases and may lead to deterioration in the performance of the control chart if a sample size is inadequate. We suggest adjusting the control limits in order to improve the performance when a sample size is insufficient to estimate the parameter. We propose a linear function for the adjustment constant, which is a function of the sample size, the number of nonconforming items in a sample, and the false alarm rate. We also compare the performance of the geometric charts without and with adjustment using the expected value of the average run length (ARL) and the standard deviation of the ARL (SDARL).

Influence of Atomizing Condition on Particle Size Distributions for High Pressure Water Atomized Powder

  • Nakabayashi, Koei;Tanaka, Yoshinari;Hirai, Masazumi
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.18-19
    • /
    • 2006
  • To improve the properties of fine metal powder, such as particle size distribution and geometric standard deviation, this work was done at various atomizing conditions. The new atomization mechanism and the correlation equation were proposed to estimate the mean particle diameter.

  • PDF

상압 분위기에서 QD 제작 및 이를 응용한 비휘발성 QD 메모리 특성 평가

  • 안강호;안진홍;정혁
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2005년도 추계 학술대회
    • /
    • pp.137-141
    • /
    • 2005
  • Quantum dot(QD) 메모리용 silicon nano-particle을 corona 방전방법에 의해 상온에서 대량 발생하는 방법을 개발하였다. Silicon QD는 SiH4 가스를 코로나 방전 영역을 통과시켜 발생시켰으며, 코로나 전압은 2.75kV를 사용하였다. SiH4 몰농도 $0.33{\times}10^{-7}\;mol/l$ 일 경우 발생된 QD입자 크기는 약 10nm이며 기하학적 표준편차(geometric standard deviation)는 1.31이었다. 이 조건에서 nonvolatile quantum dot semiconductor memory (NVQDM)를 제작하였으며, 이렇게 제작된 NVQDM flat band voltage는 1.5 volt였다.

  • PDF

중력 침강에 의한 입자 응집의 해석적 연구 (Analysis of Gravitational Coagulation of Aerosol Particles)

  • 진형아;정창훈;이규원
    • 한국대기환경학회지
    • /
    • 제14권4호
    • /
    • pp.303-312
    • /
    • 1998
  • To obtain the solution to the time-dependent particle size distribution of an aerosol undergoing gravitational coagulation, the moment method was used which converts the non linear integro-differential equation to a set of ordinary differential equations. A semi-numerical solution was obtained using this method. Subsequently, an analytic solution was given by approximating the collision kernel into a form suitable for the analysis. The results show that during gravitational coagulation, the geometric standard deviation increases and the geometric mean radius decreases as time increases.

  • PDF