• Title/Summary/Keyword: Geometric quality

Search Result 410, Processing Time 0.028 seconds

A Study on the Improvement of Geometric Quality of KOMPSAT-3/3A Imagery Using Planetscope Imagery (Planetscope 영상을 이용한 KOMPSAT-3/3A 영상의 기하품질 향상 방안 연구)

  • Jung, Minyoung;Kang, Wonbin;Song, Ahram;Kim, Yongil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.327-343
    • /
    • 2020
  • This study proposes a method to improve the geometric quality of KOMPSAT (Korea Multi-Purpose Satellite)-3/3A Level 1R imagery, particularly for efficient disaster damage analysis. The proposed method applies a novel grid-based SIFT (Scale Invariant Feature Transform) method to the Planetscope ortho-imagery, which solves the inherent limitations in acquiring appropriate optical satellite imagery over disaster areas, and the KOMPSAT-3/3A imagery to extract GCPs (Ground Control Points) required for the RPC (Rational Polynomial Coefficient) bias compensation. In order to validate its effectiveness, the proposed method was applied to the KOMPSAT-3 multispectral image of Gangnueng which includes the April 2019 wildfire, and the KOMPSAT-3A image of Daejeon, which was additionally selected in consideration of the diverse land cover types. The proposed method improved the geometric quality of KOMPSAT-3/3A images by reducing the positioning errors(RMSE: Root Mean Square Error) of the two images from 6.62 pixels to 1.25 pixels for KOMPSAT-3, and from 7.03 pixels to 1.66 pixels for KOMPSAT-3A. Through a visual comparison of the post-disaster KOMPSAT-3 ortho-image of Gangneung and the pre-disaster Planetscope ortho-image, the result showed appropriate geometric quality for wildfire damage analysis. This paper demonstrated the possibility of using Planetscope ortho-images as an alternative to obtain the GCPs for geometric calibration. Furthermore, the proposed method can be applied to various KOMPSAT-3/3A research studies where Planetscope ortho-images can be provided.

On-line Automatic Geometric Correction System of Landsat Imagery (Landsat 영상의 온라인 자동 기하보정 시스템)

  • Yun, YoungBo;Hwang, TaeHyun;Cho, Seong-Ik;Park, Jong-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.15-23
    • /
    • 2004
  • In order to utilize remote sensed images effectively, it is necessary to correct geometric distortion. Geometric correction is a critical step to remove geometric distortions in satellite images. For geometric correction, Ground Control Points (GCPs) have to be chosen carefully to guarantee the quality of geocoded satellite images, digital maps, GPS surveying or other data. Traditional approach to geometric correction used GCPs requires substantial human operations. Also that is necessary much time and manpower. In this paper, we presented an on-line automatic geometric correction by constructing GCP Chip database. The Proposed on-line automatic geometric correction system is consists of four part. Input image, control the GCP Chip, revision of selected GCP, and output setting part. In conclusion, developed system reduced the processing time and energy for tedious manual geometric correction and promoted usage of Landsat imagery.

  • PDF

A Quality Measure for Supplier Selection (공급자선정을 위한 품질척도)

  • 변재현
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • Su, pp.ier quality plays a major role in the evaluation of su, pp.iers, making it very necessary to develop a proper quality measure useful in selecting su, pp.iers that is able to meet quality specification of the customer. In this paper, we present a measure of the overall quality performance which is a weighted geometric mean of the process capability indices of the quality characteristics of a su, pp.ier. This measure can be used both as a measure of su, pp.ier selection for the customer and as a measure for the self-analysis of the quality performance for the su, pp.ier.

  • PDF

문형 5축 머시닝센터의 기하학적 오차해석 및 가상가공 시스템 개발

  • 윤태선;조재완;곽병만
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.830-835
    • /
    • 1995
  • To quickly determine the effect of the substitute component on the machine's performance is very important in the defign and the manufacturing processes. And minimizing machine cost and maximizing machine quality mandata predictability of machine accuracy. In the study, in order to evaluate the effects of the component's geometric errors and dimensions on the machining accuracy of gantry-type 5-axis machining centers, a geometric error analysis and virtual manufacturing system is developed based on the mathematical model for the shape generation motion of machine tool considering the component's geometric errors and dimensions, the solid modeling techniques and so on.

  • PDF

Accuracy of structural computation on simplified shape

  • Marin, P.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.127-140
    • /
    • 2010
  • This paper focuses on a number of criteria that enable controlling the influence of geometric simplification on the quality of finite element (FE) computations. To perform the mechanical simulation of a component, the corresponding geometric model typically needs to be simplified in accordance with hypotheses adopted regarding the component's mechanical behaviour. The method presented herein serves to compute an a posteriori indicator for the purpose of estimating the significance of each feature removal. This method can be used as part of an adaptive process of geometric simplification. If a shape detail removed during the shape simplification process proves to be influential on mechanical behaviour, the particular detail can then be reinserted into the simplified model, thus making it possible to readapt the initial simulation model. The fields of application for such a method are: static problems involving linear elastic behaviour, and linear thermal problems with stationary conduction.

A Study on Small-Sample Inspection Plan for New Product Quality Evaluation of Finite Population (유한모집단의 신제품 품질평가를 위한 소표본 샘플링검사 방법에 대한 소고)

  • Byun, Jai-Hyun;Shin, Byung-Cheol;Lee, Chang-Woo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.1
    • /
    • pp.115-120
    • /
    • 2015
  • Evaluating product quality level is necessary before the manufactured items are delivered to the customer. When the amount of the items to be manufactured is limited and the product is of high price and should be evaluated by destructive testing, the number of samples to be tested should be as small as possible. This paper presents a small-sample inspection method using hyper-geometric distribution and Bayesian approach for finite small-sized population. A method of determining the minimum sample size is presented for given population size, allowable number of defectives, warranteed defective level, and confidence level which is the degree of confidence on the product quality level recognized by both the producer and the customer.

An Image Quality Evaluation Model for Optical Strip Signal-to-Noise Ratio in the Target Area of High Temperature Forgings

  • Ma, Hongtao;Zhao, Yuyang;Feng, Yiran;Lee, Eung-Joo;Tao, Xueheng
    • Journal of Multimedia Information System
    • /
    • v.8 no.2
    • /
    • pp.93-100
    • /
    • 2021
  • Under the time-varying temperature, the high-temperature radiation of forgings and the change of reflection characteristics of oxide skin on the surface of forgings lead to the difficulty of obtaining images to truly reflect the geometric characteristics of forgings. It is urgent to study the clear and reliable acquisition method of hot forging feature image under time-varying temperature to meet the requirements of visual measurement of hot geometric parameters of forgings. Based on this, this chapter first puts forward the quality evaluation method of forging feature image, which provides guarantee for the accurate evaluation of feature image quality. Furthermore, the factors that affect the image quality, such as the radiation characteristics of forgings and the photographic characteristics of cameras, are analyzed, and the imaging spectrum which can effectively suppress the radiation intensity of forgings is determined. Finally, aiming at the problem that the quality of image acquisition is difficult to guarantee due to the drastic change of radiation intensity of forgings under time-varying temperature, an image acquisition method based on minimum signal-to-noise ratio (SNR) based laser light intensity adaptation is proposed, which significantly improves the definition of feature light strips in forging images at high temperature, and finally realizes the clear acquisition of feature images of large-scale hot forging under time-varying temperature.

Analysis of Geometric and Spatial Image Quality of KOMPSAT-3A Imagery in Comparison with KOMPSAT-3 Imagery

  • Erdenebaatar, Nyamjargal;Kim, Jaein;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.1-13
    • /
    • 2017
  • This study investigates the geometric and spatial image quality analysis of KOMPSAT-3A stereo pair. KOMPSAT-3A is, the latest satellite of KOMPSAT family, a Korean earth observation satellite operating in optical bands. A KOMPSAT-3A stereo pair was taken on 23 November, 2015 with 0.55 m ground sampling distance over Terrassa area of Spain. The convergence angle of KOMPSAT-3A stereo pair was estimated as $58.68^{\circ}$. The investigation was assessed through the evaluation of the geopositioning analysis, image quality estimation and the accuracy of automatic Digital Surface Model (DSM) generation and compared with those of KOMPSAT-3 stereo pair with the convergence angle of $44.80^{\circ}$ over the same area. First, geopositioning accuracy was tested with initial rational polynomial coefficients (RPCs) and after compensating the biases of the initial RPCs by manually collected ground control points. Then, regarding image quality, relative edge response was estimated for manually selected points visible from two stereo pairs. Both of the initial and bias-compensated positioning accuracy and the quality assessment result expressed that KOMPSAT-3A images showed higher performance than those of KOMPSAT-3 images. Finally, the accuracy of DSMs generated from KOMPSAT-3A and KOMPSAT-3 stereo pairs were examined with respect to the reference LiDAR-derived DSM. The various DSMs were generated over the whole coverage of individual stereo pairs with different grid spacing and over three types of terrain; flat, mountainous and urban area. Root mean square errors of DSM from KOMPSAT-3A pair were larger than those for KOMPSAT-3. This seems due to larger convergence angle of the KOMPSAT-3A stereo pair.

Iterative Precision Geometric Correction for High-Resolution Satellite Images (고해상도 위성영상의 반복 정밀 기하보정)

  • Son, Jong-Hwan;Yoon, Wansang;Kim, Taejung;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.431-447
    • /
    • 2021
  • Recently, the use of high-resolution satellites is increasing in many areas. In order to supply useful satellite images stably, it is necessary to establish automatic precision geometric correction technic. Geometric correction is the process that corrected geometric errors of satellite imagery based on the GCP (Ground Control Point), which is correspondence point between accurate ground coordinates and image coordinates. Therefore, in the automatic geometric correction process, it is the key to acquire high-quality GCPs automatically. In this paper, we proposed iterative precision geometry correction method. we constructed an image pyramid and repeatedly performed GCP chip matching, outlier detection, and precision sensor modeling in each layer of the image pyramid. Through this method, we were able to acquire high-quality GCPs automatically. we then improved the performance of geometric correction of high-resolution satellite images. To analyze the performance of the proposed method, we used KOMPSAT-3 and 3A Level 1R 8 scenes. As a result of the experiment, the proposed method showed the geometric correction accuracy of 1.5 pixels on average and a maximum of 2 pixels.

A Study on the Derivation of Items for Development of Data Quality Standard for 3D Building Data in National Digital Twin (디지털 트윈국토 건물 데이터 품질 표준 개발을 위한 항목 도출에 관한 연구)

  • Kim, Byeongsun;Lee, Heeseok;Hong, Sangki
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.1
    • /
    • pp.37-55
    • /
    • 2022
  • This study presents the plans to derive quality items for develop the data quality standard for ensuring the quality of 3D building geospatial data in NDT(National Digital Twin). This paper is organized as follows. The first section briefly examines various factors that impact the quality of 3D geospatial data, and proposes the role and necessity of the data quality standard as a means of addressing the data errors properly and also meeting the minimum requirements of stakeholders. The second section analyzes the relationship between the standards - building data model for NDT and ISO 19157: Geospatial data quality - in order to consider directly relevant standards. Finally, we suggest three plans on developing NDT data quality standard: (1) the scope for evaluating data quality, (2) additional quality elements(geometric integrity, geometric fidelity, positional accuracy and semantic classification accuracy), and (3) NDT data quality items model based on ISO 19157. The plans reveled through the study would contribute to establish a way for the national standard on NDT data quality as well as the other standards associated with NDT over the coming years.