• Title/Summary/Keyword: Geometric processing

Search Result 549, Processing Time 0.03 seconds

2D Planar Object Tracking using Improved Chamfer Matching Likelihood (개선된 챔퍼매칭 우도기반 2차원 평면 객체 추적)

  • Oh, Chi-Min;Jeong, Mun-Ho;You, Bum-Jae;Lee, Chil-Woo
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.37-46
    • /
    • 2010
  • In this paper we have presented a two dimensional model based tracking system using improved chamfer matching. Conventional chamfer matching could not calculate similarity well between the object and image when there is very cluttered background. Then we have improved chamfer matching to calculate similarity well even in very cluttered background with edge and corner feature points. Improved chamfer matching is used as likelihood function of particle filter which tracks the geometric object. Geometric model which uses edge and corner feature points, is a discriminant descriptor in color changes. Particle Filter is more non-linear tracking system than Kalman Filter. Then the presented method uses geometric model, particle filter and improved chamfer matching for tracking object in complex environment. In experimental result, the robustness of our system is proved by comparing other methods.

Robust watermarking technique in geometric distortion and authentication of digital images (기하학적인 변형에 강건한 워터마킹 기법과 디지털 영상의 인증)

  • Lee, Na-Young;Kim, Won;Kim, Gye-Young; Choi, Hyung-Il
    • The KIPS Transactions:PartB
    • /
    • v.10B no.4
    • /
    • pp.367-372
    • /
    • 2003
  • The existing watermarking techniques for copyright protection of a digital image are fragile in geometric distortion and it is hard to detect whether it was manipulated artificially. In this paper, we proposed the new copyright protection system that can authorize a digital mage and :an embed or extract a robust watermark in a artificial manipulation in order to solve these problems. In a watermarking part, the proposed a watermarking technique embeds a watermark in a phase component after a Complex Wavelet Transform (CWT) with an original image, and a watermark is extracted from an watermarked image by stages. A copyright about an image can be insisted on than a threshold after comparing a correlation of an original watermark with an extracted watermark if large. In an authentication part of a digital image, EZW (Embedded Zerotree Wavelet) is used, and an authentication cord of an watermarked image is generated. An authentication code of an image to have been distribute to is compared with a generated authentication cord, and artificial operation isn´t than a threshold if large. The proposed copyright protection system through performance evaluation display that it was robust in geometric distortion and a artificial operation was able to be detected.

Robust Watermarking for Digital Images in Geometric Distortions Using FP-ICA of Secant Method (할선법의 FP-ICA를 이용한 기하학적 변형에 강건한 디지털영상 워터마킹)

  • Cho Yong-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.11B no.7 s.96
    • /
    • pp.813-820
    • /
    • 2004
  • This paper proposes a digital image watermarking which is robust to geometric distortions using an independent component analysis(ICA) of fixed-point(FP) algorithm based on secant method. The FP algorithm of secant method is applied for better performance in a separation time and rate, and ICA is applied to reject the prior knowledges for original image, key, and watermark such as locations and size, etc. The proposed method embeds the watermark into the spatial domain of original image The proposed watermarking technique has been applied to lena, key, and two watermarks(text and Gaussian noise) respectively. The simulation results show that the proposed method has higher speed and better rate for extracting the original images than the FP algorithm of Newton method. And the proposed method has a watermarking which is robust to geometric distortions such as resizing, rotation, and cropping. Especially, the watermark of images with Gaussian noise has better extraction performance than the watermark with text since Gaussian noise has lower correlation coefficient than the text to the original and key images. The watermarking of ICA doesn't require the prior knowledge for the original images.

Character Shape Distortion Correction of Camera Acquired Document Images (카메라 획득 문서영상에서의 글자모양 왜곡보정)

  • Jang Dae-Geun;Kim Eui-Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.680-686
    • /
    • 2006
  • Document images captured by scanners have only skewing distortion. But camera captured document images have not only skew but also vignetting effect and geometric distortion. Vignetting effect, which makes the border areas to be darker than the center of the image, make it difficult to separate characters from the document images. But this effect has being decreased, as the lens manufacturing skill is developed. Geometric distortion, occurred by the mismatch of angle and center position between the document image and the camera, make the shape of characters to be distorted, so that the character recognition is more difficult than the case of using scanner. In this paper, we propose a method that can increase the performance of character recognition by correcting the geometric distortion of document images using a linear approximation which changes the quadrilateral region to the rectangle one. The proposed method also determine the quadrilateral transform region automatically, using the alignment of character lines and the skewed angles of characters located in the edges of each character line. Proposed method, therefore, can correct the geometric distortion without getting positional information from camera.

Automatic Estimation of Geometric Translations Between High-resolution Optical and SAR Images (고해상도 광학영상과 SAR 영상 간 자동 변위량 추정)

  • Han, You Kyung;Byun, Young Gi;Kim, Yong Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.41-48
    • /
    • 2012
  • Using multi-sensor or multi-temporal high resolution satellite images together is essential for efficient applications in remote sensing area. The purpose of this paper is to estimate geometric difference of translations between high-resolution optical and SAR images automatically. The geometric and radiometric pre-processing steps were fulfilled to calculate the similarity between optical and SAR images by using Mutual Information method. The coarsest-level pyramid images of each sensor constructed by gaussian pyramid method were generated to estimate the initial translation difference of the x, y directions for calculation efficiency. The precise geometric difference of translations was able to be estimated by applying this method from coarsest-level pyramid image to original image in order. Yet even when considered only translation between optical and SAR images, the proposed method showed RMSE lower than 5m in all study sites.

Acceleration of the Iterative Physical Optics Using Graphic Processing Unit (GPU를 이용한 반복적 물리 광학법의 가속화에 대한 연구)

  • Lee, Yong-Hee;Chin, Huicheol;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.11
    • /
    • pp.1012-1019
    • /
    • 2015
  • This paper shows the acceleration of iterative physical optics(IPO) for radar cross section(RCS) by using two techniques effectively. For the analysis of the multiple reflection in the cavity, IPO uses the near field method, unlike shooting and bouncing rays method which uses the geometric optics(GO). However, it is still far slower than physical optics(PO) and it is needed to accelerate the speed of IPO for practical purpose. In order to address this problem, graphic processing unit(GPU) can be applied to reduce calculation time and adaptive iterative physical optics-change rate(AIPO-CR) method is also applicable effectively to optimize iteration for acceleration of calculation.

Automatic Title Detection by Spatial Feature and Projection Profile for Document Images (공간 정보와 투영 프로파일을 이용한 문서 영상에서의 타이틀 영역 추출)

  • Park, Hyo-Jin;Kim, Bo-Ram;Kim, Wook-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.3
    • /
    • pp.209-214
    • /
    • 2010
  • This paper proposes an algorithm of segmentation and title detection for document image. The automated title detection method that we have developed is composed of two phases, segmentation and title area detection. In the first phase, we extract and segment the document image. To perform this operation, the binary map is segmented by combination of morphological operation and CCA(connected component algorithm). The first phase provides segmented regions that would be detected as title area for the second stage. Candidate title areas are detected using geometric information, then we can extract the title region that is performed by removing non-title regions. After classification step that removes non-text regions, projection is performed to detect a title region. From the fact that usually the largest font is used for the title in the document, horizontal projection is performed within text areas. In this paper, we proposed a method of segmentation and title detection for various forms of document images using geometric features and projection profile analysis. The proposed system is expected to have various applications, such as document title recognition, multimedia data searching, real-time image processing and so on.

Computer Vision Based Measurement, Error Analysis and Calibration (컴퓨터 시각(視覺)에 의거한 측정기술(測定技術) 및 측정오차(測定誤差)의 분석(分析)과 보정(補正))

  • Hwang, H.;Lee, C.H.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.1
    • /
    • pp.65-78
    • /
    • 1992
  • When using a computer vision system for a measurement, the geometrically distorted input image usually restricts the site and size of the measuring window. A geometrically distorted image caused by the image sensing and processing hardware degrades the accuracy of the visual measurement and prohibits the arbitrary selection of the measuring scope. Therefore, an image calibration is inevitable to improve the measuring accuracy. A calibration process is usually done via four steps such as measurement, modeling, parameter estimation, and compensation. In this paper, the efficient error calibration technique of a geometrically distorted input image was developed using a neural network. After calibrating a unit pixel, the distorted image was compensated by training CMLAN(Cerebellar Model Linear Associator Network) without modeling the behavior of any system element. The input/output training pairs for the network was obtained by processing the image of the devised sampled pattern. The generalization property of the network successfully compensates the distortion errors of the untrained arbitrary pixel points on the image space. The error convergence of the trained network with respect to the network control parameters were also presented. The compensated image through the network was then post processed using a simple DDA(Digital Differential Analyzer) to avoid the pixel disconnectivity. The compensation effect was verified using known sized geometric primitives. A way to extract directly a real scaled geometric quantity of the object from the 8-directional chain coding was also devised and coded. Since the developed calibration algorithm does not require any knowledge of modeling system elements and estimating parameters, it can be applied simply to any image processing system. Furthermore, it efficiently enhances the measurement accuracy and allows the arbitrary sizing and locating of the measuring window. The applied and developed algorithms were coded as a menu driven way using MS-C language Ver. 6.0, PC VISION PLUS library functions, and VGA graphic functions.

  • PDF

A Study on the Estimation of the Sea Surface Temperature from AVHRR CH4 data of NOAA-9 (극궤도 기상위성 NOAA-9호의 AVHRR CH4 data로 부터 해수면온도 산출과정에 관한 연구)

  • 이희훈;서애숙
    • Korean Journal of Remote Sensing
    • /
    • v.3 no.1
    • /
    • pp.41-54
    • /
    • 1987
  • Accurate determination of Sea Surface Temperature (SST) is essential for ocean and climate studies. This paper estimated SST in the sea region around the Korea from the Advenced Very High Resolution Radiometer(AVHRR) channel 4 data on board NOAA-9 satellite. The processing procedure used to derive SSTs utilized: 1) Ascending node prediction of satellite orbit 2) Geometric correction 3) Radiometric calibration and radiance to temperature conversion look up table 4) Removing cloudy area. SST product results are displayed as colored video and hardcopy. In this processing, geometric correction is derived from equator crossing time, ascending time and subpoint coordinate information. Also, normalized response function of infrared 10.5-11.5$\mu\textrm{m}$ wavelength is used for temperature conversion. The SST derived from this processing is relatively similar to the measurements made by ship data, but because of water vapor attenuation SST from satellite are in general 2$^{\circ}$- $^{\circ}C$ lower than the ship data.

Support-generation Method Using the Morphological Image Processing for DLP 3D Printer (DLP 3D 프린터를 위한 형태학적 영상처리를 이용한 서포터 생성 방법)

  • Lee, Seung-Mok;Kim, Young-Hyung;Eem, Jae-Kwon
    • The Journal of Korean Institute of Information Technology
    • /
    • v.15 no.12
    • /
    • pp.165-171
    • /
    • 2017
  • This paper proposes a method of support-generation using morphological image processing instead of geometric calculations. The geometric computational cost is dependent on the shape, but our method is independent on the shape. For obtaining the external support area for extrusion shape, we represents morphological operations between two sliced layer images and shows results of each operation stages. Internal support area is evaluated from erosion and opening operations with the sliced-layer image. In these support areas, the supporter image is generated using the designed support structures. Also, we made a DLP printer and the STL model included supporter-structure is printed by the DLP printer. We confirmed the necessity of support-generation method with the support structures individually dependent on materials by looking at the printed results.