• Title/Summary/Keyword: Geometric model

Search Result 2,073, Processing Time 0.027 seconds

Vignetting Dimensional Geometric Models and a Downhill Simplex Search

  • Kim, Hyung Tae;Lee, Duk Yeon;Choi, Dongwoon;Kang, Jaehyeon;Lee, Dong-Wook
    • Current Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.161-170
    • /
    • 2022
  • Three-dimensional (3D) geometric models are introduced to correct vignetting, and a downhill simplex search is applied to determine the coefficients of a 3D model used in digital microscopy. Vignetting is nonuniform illuminance with a geometric regularity on a two-dimensional (2D) image plane, which allows the illuminance distribution to be estimated using 3D models. The 3D models are defined using generalized polynomials and arbitrary coefficients. Because the 3D models are nonlinear, their coefficients are determined using a simplex search. The cost function of the simplex search is defined to minimize the error between the 3D model and the reference image of a standard white board. The conventional and proposed methods for correcting the vignetting are used in experiments on four inspection systems based on machine vision and microscopy. The methods are investigated using various performance indices, including the coefficient of determination, the mean absolute error, and the uniformity after correction. The proposed method is intuitive and shows performance similar to the conventional approach, using a smaller number of coefficients.

Measurement and prediction of geometric imperfections in structural stainless steel members

  • Cruise, R.B.;Gardner, L.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.63-89
    • /
    • 2006
  • Geometric imperfections have an important influence on the buckling response of structural components. This paper describes an experimental technique for determining imperfections in long (5.7 m) structural members using a series of overlapping measurements. Measurements were performed on 31 austenitic stainless steel sections formed from three different production routes: hot-rolling, cold-rolling and press-braking. Spectral analysis was carried out on the imperfections to obtain information on the periodic nature of the profiles. Two series were used to model the profile firstly the orthogonal cosine and sine functions in a classic Fourier transform and secondly a half sine series. Results were compared to the relevant tolerance standards. Simple predictive tools for both local and global imperfections have been developed to enable representative geometric imperfections to be incorporated into numerical models and design methods.

Development of a Costing Model for Wooden Patterns of Casting Structures for Machine Tools

  • Seo, Han-Tae;Choi, Jin-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.386-393
    • /
    • 2015
  • A study is carried out on investigation on pattern costs, identification of geometric parameters for the cost, and development of cost estimation models for casting patterns. Pattern costs for machine tool structures are collected and analyzed to identify the important geometric parameters that affect the costs. The parameters are used for the development of the costing models. It is found that the geometric parameters can be easily obtained from a CAD system and then the costing models estimate a pattern cost in a minimum time. The models are verified with the structures whose pattern cost was used for this study. It is expected that this costing models can evaluate the cost of casting structures of machine tools in search of a near-optimal design based on manufacturing cost and, for example, weight at the design stage.

Triangle Based Geometric modeling for rapid Prototyping CAM system (고속시작 시스템을 위한 삼각형 기반 형상모델링)

  • 채희창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.587-591
    • /
    • 1996
  • Usually triangular patches are used to transfer geometric shape in Rpaid Prototyping CAM system. STL, a list of triangles, is de facto in RP industry. Because STL has no topology data, it can cause errornous results. So, STL should be verified before using. After adding support structures to anchor the part to the platform and to prevent sagging or distortion, slicing and layer by layer manufacturing process are done. But triangular patch is surface model and cannot provide dufficient information on geometry in the above processes. So, geometric modeling is necessary in verifying STL, adding support structures, and slicing. It is natural that triangle based modeling is the best when traingular patches are used as input. Considering support structures, solid and faces coexist in RP process. Therefore non-manifold modeler is required. In this study, triangle based non-manifold geometric modeling is proposed for RP system consitent with STL input.

  • PDF

Planar Error Sensitivity Analysis in a CNC Turning Cen (2차원 CNC 선반에서 평면오차 민감도 분석)

  • 여규환;이진현;양승한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1017-1021
    • /
    • 1995
  • Geometric and thermal errors are responsible for major components of the errors of a computer numerically controlled turning center. The planar error of a CNC turning center are comprised of 11 geometric and thermal error components. The error synthesis model is formulated by homogeneous coordinate transformation method and expresses the effect of such error components on the planar error of a CNC turning center. In this paper, the sensitivity analysis of the model on the noises through sensing and the change of temperature is addressed. The sensitivity analysis show that the error systhesis model is robust on the noses and z planar error is much affected by the change of temperatures.

  • PDF

A 3D co-rotational beam element for steel and RC framed structures

  • Long, Xu;Tan, Kang Hai;Lee, Chi King
    • Structural Engineering and Mechanics
    • /
    • v.48 no.5
    • /
    • pp.587-613
    • /
    • 2013
  • A 3-node 3D co-rotational beam element using vectorial rotational variables is employed to consider the geometric nonlinearity in 3D space. To account for shape versatility and reinforced concrete cross-sections, fibre model has been derived and conducted. Numerical integration over the cross-section is performed, considering both normal and shear stresses. In addition, the derivations associated with material nonlinearity are given in terms of elasto-plastic incremental stress-strain relationship for both steel and concrete. Steel reinforcement is treated as elasto-plastic material with Von Mises yield criterion. Compressive concrete behaviour is described by Modified Kent and Park model, while tensile stiffening effect is taken into account as well. Through several numerical examples, it is shown that the proposed 3D co-rotational beam element with fibre model can be used to simulate steel and reinforced concrete framed structures with satisfactory accuracy and efficiency.

Strategic Resource Initiative of Enterprise

  • Viatkina, Tetiana
    • Asian Journal of Business Environment
    • /
    • v.4 no.4
    • /
    • pp.5-11
    • /
    • 2014
  • Purpose - The paper aims to study strategic enterprise resource initiative formation processes. It analyzes the process of managing the strategic resource initiative and discusses its implementation mechanism. A research model for enterprises' strategic development is proposed, which suggests a geometric interpretation for estimating a company's long-term development. Research design, data, and methodology - The analysis employs theoretical studies of modern researchers. The main models used to determine the optimal alternative business strategy are graphic interpretation and mathematical modeling. Results - The hypotheses testing demonstrates the definition of a company's strategic resource initiative and explains the-mechanism or design of its formation. The study presents a geometric prism-refraction model of practice using a strategic resource initiative. Conclusions - An enterprise's strategy could return to its initial state in case of its unexpected deviation as a result of passing through the nodal points. The proposed model allows us to evaluate business performance, its surrounding environment, and the resource management strategy, to determine the necessary scope of strategy changes necessary to bring it back to the original state.

Base Station Placement for Wireless Sensor Network Positioning System via Lexicographical Stratified Programming

  • Yan, Jun;Yu, Kegen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4453-4468
    • /
    • 2015
  • This paper investigates optimization-based base station (BS) placement. An optimization model is defined and the BS placement problem is transformed to a lexicographical stratified programming (LSP) model for a given trajectory, according to different accuracy requirements. The feasible region for BS deployment is obtained from the positioning system requirement, which is also solved with signal coverage problem in BS placement. The LSP mathematical model is formulated with the average geometric dilution of precision (GDOP) as the criterion. To achieve an optimization solution, a tolerant factor based complete stratified series approach and grid searching method are utilized to obtain the possible optimal BS placement. Because of the LSP model utilization, the proposed algorithm has wider application scenarios with different accuracy requirements over different trajectory segments. Simulation results demonstrate that the proposed algorithm has better BS placement result than existing approaches for a given trajectory.

A PRICING METHOD OF HYBRID DLS WITH GPGPU

  • YOON, YEOCHANG;KIM, YONSIK;BAE, HYEONG-OHK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.277-293
    • /
    • 2016
  • We develop an efficient numerical method for pricing the Derivative Linked Securities (DLS). The payoff structure of the hybrid DLS consists with a standard 2-Star step-down type ELS and the range accrual product which depends on the number of days in the coupon period that the index stay within the pre-determined range. We assume that the 2-dimensional Geometric Brownian Motion (GBM) as the model of two equities and a no-arbitrage interest model (One-factor Hull and White interest rate model) as a model for the interest rate. In this study, we employ the Monte Carlo simulation method with the Compute Unified Device Architecture (CUDA) parallel computing as the General Purpose computing on Graphic Processing Unit (GPGPU) technology for fast and efficient numerical valuation of DLS. Comparing the Monte Carlo method with single CPU computation or MPI implementation, the result of Monte Carlo simulation with CUDA parallel computing produces higher performance.

Node-reduction Model of Large-scale Network Grape (대형 회로망 그래프 마디축소 모델)

  • Hwang, Jae-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.2
    • /
    • pp.93-99
    • /
    • 2001
  • A new type geometric and mathematical network reduction model is introduced. Large-scale network is analyzed with analytic approach. The graph has many nodes, branches and loops. Circuit equation are obtained from these elements and connection rule. In this paper, the analytic relation between voltage source has a mutual different graphic property. Node-reduction procedure is achieved with this circuit property. Consequently voltage source value is included into the adjacent node-analyzing equation. A resultant model equations are reduced as much as voltage source number. Matrix rank is (n-1-k), where n, k is node and voltage source number. The reduction procedure is described and verified with geometric principle and circuit theory. Matrix type circuit equation can be composed with this technique. The last results shall be calculated by using computer.

  • PDF