• Title/Summary/Keyword: Geometric model

검색결과 2,066건 처리시간 0.026초

도로 위 숫자 및 기호 인식을 위한 광각렌즈 기반 Camera Calibration 연구

  • 강진규;홍형길;;;박강령;조형오
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.1406-1407
    • /
    • 2015
  • 본 논문에서는 도로 위 숫자 및 기호인식에 적합한 Calibration Model에 대하여 연구하였다. 기존에 제시된 Geometric Transform, Fisheye Projection, Caltech Toolbox 기반 방법으로 얻은 Calibration Model의 성능을 비교하였다. Geometric Transform은 Fisheye Distortion Correction에 부적합한 결과를 얻었고, Fisheye Projection은 성능은 좋으나 시스템에 사용할 Camera Lens의 Specification을 모르기 때문에 이를 예측해야 하는 단점이 있다. 마지막으로 Caltech Tool box 기반 방법은 Calibration을 위한 Keypoint를 수동으로 지정하다 보니까 이로 인한 오차가 존재하게 된다. Calibration을 시도 할 때마다 결과에 차이가 있었으며, Calibration 결과의 측면에서 Fisheye Projection이 가시적으로 가장 좋은 결과를 나타냈다.

Combined effects of end-shortening strain, lateral pressure load and initial imperfection on ultimate strength of laminates: nonlinear plate theory

  • Ghannadpour, S.A.M.;Barvaj, A. Kurkaani
    • Steel and Composite Structures
    • /
    • 제33권2호
    • /
    • pp.245-259
    • /
    • 2019
  • The present study aims to investigate the ultimate strength and geometric nonlinear behavior of composite plates containing initial imperfection subjected to combined end-shortening strain and lateral pressure loading by using a semi-analytical method. In this study, the first order shear deformation plate theory is considered with the assumption of large deflections. Regarding in-plane boundary conditions, two adjacent edges of the laminates are completely held while the two others can move straightly. The formulations are based on the concept of the principle of minimum potential energy and Newton-Raphson technique is employed to solve the nonlinear set of algebraic equations. In addition, Hashin failure criteria are selected to predict the failures. Further, two distinct models are assumed to reduce the mechanical properties of the failure location, complete ply degradation model, and ply region degradation model. Degrading the material properties is assumed to be instantaneous. Finally, laminates having a wide range of thicknesses and initial geometric imperfections with different intensities of pressure load are analyzed and discuss how the ultimate strength of the plates changes.

COMPARISON OF DISCRETE TIME INVENTORY SYSTEMS WITH POSITIVE SERVICE TIME AND LEAD TIME

  • Balagopal, N;Deepthy, CP;Jayaprasad, PN;Varghese, Jacob
    • Korean Journal of Mathematics
    • /
    • 제29권2호
    • /
    • pp.371-386
    • /
    • 2021
  • This paper investigates two discrete time queueing inventory models with positive service time and lead time. Customers arrive according to a Bernoulli process and service time and lead time follow geometric distributions. The first model under discussion based on replenishment of order upto S policy where as the second model is based on order placement by a fixed quantity Q, where Q = S - s, whenever the inventory level falls to s. We analyse this queueing systems using the matrix geometric method and derive an explicit expression for the stability condition. We obtain the steady-state behaviour of these systems and several system performance measures. The influence of various parameters on the systems performance measures and comparison on the cost analysis are also discussed through numerical example.

Graphemes Segmentation for Arabic Online Handwriting Modeling

  • Boubaker, Houcine;Tagougui, Najiba;El Abed, Haikal;Kherallah, Monji;Alimi, Adel M.
    • Journal of Information Processing Systems
    • /
    • 제10권4호
    • /
    • pp.503-522
    • /
    • 2014
  • In the cursive handwriting recognition process, script trajectory segmentation and modeling represent an important task for large or open lexicon context that becomes more complicated in multi-writer applications. In this paper, we will present a developed system of Arabic online handwriting modeling based on graphemes segmentation and the extraction of its geometric features. The main contribution consists of adapting the Fourier descriptors to model the open trajectory of the segmented graphemes. To segment the trajectory of the handwriting, the system proceeds by first detecting its baseline by checking combined geometric and logic conditions. Then, the detected baseline is used as a topologic reference for the extraction of particular points that delimit the graphemes' trajectories. Each segmented grapheme is then represented by a set of relevant geometric features that include the vector of the Fourier descriptors for trajectory shape modeling, normalized metric parameters that model the grapheme dimensions, its position in respect to the baseline, and codes for the description of its associated diacritics.

A NEW APPROACH FOR DESIGN AND OPTIMIZATION OF SRM WAGON WHEEL GRAIN

  • Nisar, Khurram;Liang, Guozhu
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.247-254
    • /
    • 2008
  • The primary objective of this research is to develop an efficient design and optimization methodology for SRM Wagon Wheel Grain and to develop of software for practical designing and optimization of Wagon Wheel grains. This work will provide a design process reference guide for engineers in the field of Solid Rocket Propulsion. Using these proposed design methods, SRM Wagon Wheel grains can be designed for various geometries, their optimal solutions can be found and best possible configuration be attained thereby ensuring finest design in least possible iterations & time. The main focus is to improve computational efficiency at various levels of the design work. These have been achieved by the following way. a. Evaluation of system requirements and design objectives. b. Development of Geometric Model of Wagon Wheel grain configuration. c. Internal ballistic performance predictions. d. Preliminary designing of the Wagon Wheel grain configuration involving various independent geometric variables. e. Optimization of the grain configuration using Sequential Quadratic Programming f. In depth analysis of the optimal results considering affects of various geometric variables on ballistic parameters and analysis of performance prediction outputs have been performed g. Development of software for design and optimization of Wagon Wheel Grain. By using these proposed design methods, SRM Wagon Wheel grains can be designed by using geometric model, their optimal solutions can be found and best possible configuration be attained thereby ensuring finest design.

  • PDF

A new hierarchic degenerated shell element for geometrically non-linear analysis of composite laminated square and skew plates

  • Woo, Kwang-Sung;Park, Jin-Hwan;Hong, Chong-Hyun
    • Structural Engineering and Mechanics
    • /
    • 제17권6호
    • /
    • pp.751-766
    • /
    • 2004
  • This paper extends the use of the hierarchic degenerated shell element to geometric non-linear analysis of composite laminated skew plates by the p-version of the finite element method. For the geometric non-linear analysis, the total Lagrangian formulation is adopted with moderately large displacement and small strain being accounted for in the sense of von Karman hypothesis. The present model is based on equivalent-single layer laminate theory with the first order shear deformation including a shear correction factor of 5/6. The integrals of Legendre polynomials are used for shape functions with p-level varying from 1 to 10. A wide variety of linear and non-linear results obtained by the p-version finite element model are presented for the laminated skew plates as well as laminated square plates. A numerical analysis is made to illustrate the influence of the geometric non-linear effect on the transverse deflections and the stresses with respect to width/depth ratio (a/h), skew angle (${\beta}$), and stacking sequence of layers. The present results are in good agreement with the results in literatures.

Thermal post-buckling analysis of graphene platelets reinforced metal foams beams with initial geometric imperfection

  • Gui-Lin She;Yin-Ping Li;Yujie He;Jin-Peng Song
    • Computers and Concrete
    • /
    • 제33권3호
    • /
    • pp.241-250
    • /
    • 2024
  • This article investigates the thermal and post-buckling problems of graphene platelets reinforced metal foams (GPLRMF) beams with initial geometric imperfection. Three distribution forms of graphene platelet (GPLs) and foam are employed. This article utilizes the mixing law Halpin Tsai model to estimate the physical parameters of materials. Considering three different boundary conditions, we used the Euler beam theory to establish the governing equations. Afterwards, the Galerkin method is applied to discretize these equations. The correctness of this article is verified through data analysis and comparison with the existing articles. The influences of geometric imperfection, GPL distribution modes, boundary conditions, GPLs weight fraction, foam distribution pattern and foam coefficient on thermal post-buckling are analyzed. The results indicate that, perfect GPLRMF beams do not undergo bifurcation buckling before reaching a certain temperature, and the critical buckling temperature is the highest when both ends are fixed. At the same time, the structural stiffness of the beam under the GPL-A model is the highest, and the buckling response of the beam under the Foam-II mode is the lowest, and the presence of GPLs can effectively improve the buckling strength.

개선된 챔퍼매칭 우도기반 2차원 평면 객체 추적 (2D Planar Object Tracking using Improved Chamfer Matching Likelihood)

  • 오치민;정문호;유범재;이칠우
    • 정보처리학회논문지B
    • /
    • 제17B권1호
    • /
    • pp.37-46
    • /
    • 2010
  • 본 논문에서는 개선된 챔퍼매칭(Chamfer Matching)으로 2차원 평면 객체 모델을 추적하는 방법을 제시한다. 기존 챔퍼매칭은 배경이 복잡할 경우 객체와 영상간의 유사도를 계산하기 어려운 단점이 있다. 따라서 본 논문에서는 챔퍼매칭을 에지와 코너특징을 사용해 복잡한 배경에서도 유사도를 계산할 수 있도록 개선한다. 개선된 챔퍼매칭은 기하(Geometric) 모델을 추적하는 파티클 필터(Particle Filter)의 우도함수로 사용된다. 기하모델은 2차원 평면 객체를 에지 및 코너 특징점과 포즈로 모델링하며, 색상 변화에 안정적인 객체서술자이다. 파티클 필터는 칼만필터 보다 더 비선형적인 추적 방법이다. 따라서 제안된 방법은 복잡한 환경에서 객체를 추적하기 위해 기하모델 및 파티클 필터, 개선된 챔퍼 매칭을 사용한다. 실험 결과에서는 제안 방법의 강건함을 기존 방법의 비교를 통해 나타낸다.

Mathematical Model of Optimal Payouts under Non-linear Demand Curve

  • Won, Chaehwan
    • Management Science and Financial Engineering
    • /
    • 제10권2호
    • /
    • pp.53-71
    • /
    • 2004
  • In this study, a mathematical model that shows the optimal payout policy is developed. The model is new and unique in the sense that not only continuous-time framework is used, but also both partial differential equation (PDE) and real-option approach are utilized in the derivation of optimal payouts for the first time. In the model building, non-linear demand curve for dividend payouts in the competitive capital markets is assumed. From the sensitivity analysis using traditional comparative static analysis, some useful managerial implications which are consistent with famous previous studies are derived under realistic conditions. All results in this study, however, are valid under the assumption that the opportunity costs follow geometric Brownian motion, which is widely used in economic science and finance literature.

Development of new predictive analysis in the orthogonal metal cutting process by utilization of Oxley's machining theory

  • Abdelkader, Karas;Mohamed, Bouzit;Mustapha, Belarbi;Redha, Mazouzi
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1467-1481
    • /
    • 2015
  • This paper presents a contribution to improving an analytical thermo-mechanical modeling of Oxley's machining theory of orthogonal metals cutting, which objective is the prediction of the cutting forces, the average stresses, temperatures and the geometric quantities in primary and secondary shear zones. These parameters will then be injected into the developed model of Karas et al. (2013) to predict temperature distributions at the tool-chip-workpiece interface. The amendment to Oxley's modified model is the reduction of the estimation of time-related variables cutting process such as cutting forces, temperatures in primary and secondary shear zones and geometric variables by the introduction the constitutive equation of Johnson-Cook model. The model-modified validation is performed by comparing some experimental results with the predictions for machining of 0.38% carbon steel.