• Title/Summary/Keyword: Geometric mesh

Search Result 201, Processing Time 0.03 seconds

3D Content Model Hashing Based on Object Feature Vector (객체별 특징 벡터 기반 3D 콘텐츠 모델 해싱)

  • Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.6
    • /
    • pp.75-85
    • /
    • 2010
  • This paper presents a robust 3D model hashing based on object feature vector for 3D content authentication. The proposed 3D model hashing selects the feature objects with highest area in a 3D model with various objects and groups the distances of the normalized vertices in the feature objects. Then we permute groups in each objects by using a permutation key and generate the final binary hash through the binary process with the group coefficients and a random key. Therefore, the hash robustness can be improved by the group coefficient from the distance distribution of vertices in each object group and th hash uniqueness can be improved by the binary process with a permutation key and a random key. From experimental results, we verified that the proposed hashing has both the robustness against various mesh and geometric editing and the uniqueness.

Cumulative Angular Distortion Curve of Multi-Pass Welding at Thick Plate of Offshore Structures

  • Ha, Yunsok;Choi, Jiwon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.106-114
    • /
    • 2015
  • In the fabrication of offshore oil and gas facilities, the significance of dimension control is growing continuously. But, it is difficult to determine the deformation of the structure during fabrication by simple lab tests due to the large size and the complicated shape. Strain-boundary method (a kind of shrinkage method) based on the shell element was proposed to predict the welding distortion of a structure effectively. Modeling of weld geometry in shell element is still a difficult task. In this paper, a concept of imaginary temperature pair is introduced to handle the effect of geometric factors such as groove shape, plate thickness and pass number, etc. Single pass imaginary temperature pair formula is derived from the relation between the groove area and the FE mesh size. By considering the contribution of each weld layer to the whole weldment, multi-pass imaginary temperature is also derived. Since the temperature difference represents the distortion increment, cumulative distortion curve can be drawn by integrating the temperature difference. This curve will be a useful solution when engineers meet some problems occurred in the shipyard. A typical example is shown about utilization of this curve. Several verifications are conducted to examine the validity of the proposed methodology. The applicability of the model is also demonstrated by applying it to the fabrication process of the heavy ship block. It is expected that the imaginary temperature model can effectively solve the modeling problem in shell element. It is also expected that the cumulative distortion curve derived from the imaginary temperature can offer useful qualitative information about angular distortion without FE analysis.

An Efficient Real-time Rendering Method for Compressed Terrain Dataset with Wavelet Transform (웨이블릿 변환으로 압축된 지형 데이터의 효율적인 실시간 렌더링 기법)

  • Kim, Tae-Gwon;Lee, Eun-Seok;Shin, Byeong-Seok
    • Journal of Korea Game Society
    • /
    • v.14 no.4
    • /
    • pp.45-52
    • /
    • 2014
  • We cannot load the entire data for high-resolution terrain model to the GPU memory since its size is too big. Out-of-core approaches are commonly used to solve the problem. However, due to limited bandwidth of the secondary storage, it is difficult to render the terrain in real-time. A method that compresses the DEM data with wavelet transform on GPU, and renders the decoded data is suggested. However, it is inefficient since it has to sample the values from textures, convert them to vertices, and generate a mesh periodically. We propose a method to store the approximation coefficients of wavelet compression as vertex attributes and render the terrain by decoding the data on geometric shader. It can reduce the amount of transferring terrain texture since approximation coefficients are given as an attribute of the vertex. Also, it generate meshes without additional upload of terrain texture.

Shape Description and Recognition Using the Relative Distance-Curvature Feature Space (상대거리-곡률 특징 공간을 이용한 형태 기술 및 인식)

  • Kim Min-Ki
    • The KIPS Transactions:PartB
    • /
    • v.12B no.5 s.101
    • /
    • pp.527-534
    • /
    • 2005
  • Rotation and scale variations make it difficult to solve the problem of shape description and recognition because these variations change the location of points composing the shape. However, some geometric Invariant points and the relations among them are not changed by these variations. Therefore, if points in image space depicted with the r-y coordinates system can be transformed into a new coordinates system that are invariant to rotation and scale, the problem of shape description and recognition becomes easier. This paper presents a shape description method via transformation from the image space into the invariant feature space having two axes: representing relative distance from a centroid and contour segment curvature(CSC). The relative distance describes how far a point departs from the centroid, and the CSC represents the degree of fluctuation in a contour segment. After transformation, mesh features were used to describe the shape mapped onto the feature space. Experimental results show that the proposed method is robust to rotation and scale variations.

State-of-the-art 3D GIS: System Development Perspectives

  • Kim, Kyong-Ho;Lee, Ki-Won;Lee, Jong-Hun;Yang, Young-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.153-158
    • /
    • 1998
  • Since the mid-1990′s, researches on 3D GIS have been regarded as one of main issues both in the academic sites and commercial vendors; recently, some prototyped systems or the first versioned software systems of commercial basis are being reported and released. Unlike conventional 2D GIS, which consists in intelligent structured GIS or desktop GIS, every 3D GIS has its own distinguished features according to data structure-supporting capability, GIS-styled functionality, external database accessibility, interfacing extents with 2D GIS, 3D visualization/texture mapping ability, and so forth. In this study, technical aspects related to system development, SERI-Web3D GIS ver. 1.2, are explained. Main features in this revised 3D GIS can be summarized: 2-tier system model(client-server), VGFF(Virtual GIS File Format), internal GIS import, Feature manager(zoning, layering, visualization evironment), Scene manager(manage 3D geographic world), Scene editor, Spatial analyzer(Intersect, Buffering, Network analysis), VRML exporter. While, most other 3D GISes or cartographic mapping systems may be categorized into 3D visualization systems handling terrain height-field processing, 2D GIS extension modules, or 3D geometric feature generation system using orthophoto image: actually, these are eventually considered as several parts of "real 3D GIS". As well as these things, other components, especially web-based 3D GIS, are being implemented in this study: Surface/feature integration, Java/VRML linkage, Mesh/Grid problem, LOD(Level of Detail)/Tiling, Public access security problem, 3-tier architecture extension, Surface handling strategy for VRML.

  • PDF

A X-ray Tube Using Field Emitter Made by Multi-walled Carbon Nanotube Yarns

  • Kim, Hyun-Suk;Castro, Edward Joseph D.;Kwak, Seung-Im;Ju, Jin-Young;Hwang, Yong-Gyoo;Lee, Choong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.392-392
    • /
    • 2011
  • Carbon nanotubes (CNT) emitter has widely become an attractive mechanism that draws growing interests for cold cathode field emission.$^{1,2}$ CNT yarns have demonstrated its potential as excellent field emitters.$^3$ Extensive simulations were carried out in designing a CNT yarn-based cathode assembly. The focal spot size dependence on the anode surface of the geometric parameters such as axial distance of the electrostatic focus lens from the cathode and the applied bias voltages at the cathode, grid mesh and electrostatic focus lens were studied. The detailed computer simulations using Opera 3D electromagnetic software$^4$ had revealed that a remarkable size of focal spot under a focusing lens triode type set-up design was achieved. The result of this optimization simulation would then be applied for the construction of the CNT yarn based micro-focus x-ray tube with its field emission characteristics evaluated.

  • PDF

Shape Design Optimization Using Isogeometric Analysis (등기하 해석법을 이용한 형상 최적설계)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.233-238
    • /
    • 2008
  • In this paper, a shape design optimization method for linearly elastic problems is developed using isogeometric approach. In many design optimization problems for practical engineering models, initial raw data usually come from a CAD modeler. Then, designers should convert the CAD data into finite element mesh data since most of conventional design optimization tools are based on finite element analysis. During this conversion, there are some numerical errors due to geometric approximation, which causes accuracy problems in response as well as design sensitivity analyses. As a remedy for this phenomenon, the isogeometric analysis method can be one of the promising approaches for the shape design optimization. The main idea of isogeometric approach is that the basis functions used in analysis is exactly the same as the ones representing the geometry. This geometrically exact model can be used in the shape sensitivity analysis and design optimization as well. Therefore the shape design sensitivity with high accuracy can be obtained, which is very essential for a gradient-based optimization. Through numerical examples, it is verified that the shape design optimization based on an isogeometic approach works well.

3D Medical Image Data Watermarking Applied to Healthcare Information Management System (헬스케어 정보 관리 시스템의 3D 의료영상 데이터 다중 워터마킹 기법)

  • Lee, Suk-Hwan;Kwon, Ki-Ryong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11A
    • /
    • pp.870-881
    • /
    • 2009
  • The rapid development of healthcare information management for 3D medical digital library, 3D PACS and 3D medical diagnosis has addressed security issues with medical IT technology. This paper presents multiple 3D medical image data for protection, authentication, indexing and diagnosis information hiding applied to healthcare information management. The proposed scheme based on POCS watermarking embeds the robust watermark for doctor's digital signature and information retrieval indexing key to the distribution of vertex curvedness and embeds the fragile watermark for diagnosis information and authentication reference message to the distance difference of vertex. The multiple embedding process designs three convex sets for robustness, fragileness and invisibility and projects 3D medical image data onto three convex sets alternatively and iteratively. Experimental results confirmed that the proposed scheme has the robustness and fragileness to various 3D geometric and mesh modifiers at once.

A Virtual Sculpting System using Haptic Interface (햅틱 인터페이스를 이용한 가상 조각 시스템)

  • Kim Laehyun;Park Sehyung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.12
    • /
    • pp.682-691
    • /
    • 2004
  • We present a novel haptic sculpting system where the user intuitively adds to and carves out material from a volumetric model using new sculpting tools in the similar way to handling real clay Haptic rendering and model deformation are implemented based on volumetric implicit surface. We enhance previous volume-based haptic sculpting systems by presenting fast and stable force computation on 3D models to be deformed. In order to bridge the gap between fast haptic process (1 KHz) and much slower visual update frequency(~30Hz), the system generates intermediate implicit surfaces between two consecutive physical models being deformed. It performs collision detection and force computation on the intermediate surface in haptic process. The volumetric model being sculpted is visualized as a geometric model which is adaptively polygonized according to the surface complexity. We also introduce various visual effects for the real-time sculpting system including mesh-based solid texturing, painting, and embossing/engraving techniques.

Optimal Structural Design Framework of Composite Rotor Blades Using PSGA (PSGA를 이용한 복합재료 블레이드의 최적 구조설계 프레임워크 개발 연구)

  • Ahn, Joon-Hyek;Bae, Jae-Seong;Jung, Sung Nam
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.31-37
    • /
    • 2022
  • In this study, an optimal structural design framework has been developed for the structural design of composite helicopter blades. The optimal design framework is constructed using PSGA (Particle Swarm assisted Genetic Algorithm), which combines the genetic algorithm and particle swarm optimizer. The optimization process consists of a finite element (FE) modeling over the blade section, two-dimensional (2D) cross-sectional FE analysis, and 1D rotating blade analysis. In the design process, the geometric curves and surfaces are formed using the B-spline scheme while discretizing the sections via a FE mesh generation program Gmsh. The blade cross-sections are created in accordance with the design variables when performing the blade structural analysis. The proposed optimization design framework is applied to a modernization of the HART II (Higher-harmonic Aeroacoustics Rotor Test II) blades. It is demonstrated that an improved blade design is reached through the current optimization framework with the satisfaction of all design requirements set for the study.