• 제목/요약/키워드: Geometric kernel

검색결과 35건 처리시간 0.023초

CAD/CAM 응용 소프트웨어 개발은 위한 형상 커널 개발 (Geometric Kernel for CAD/CAM Application Software Development)

  • 정연찬;박준철
    • 한국CDE학회논문집
    • /
    • 제6권4호
    • /
    • pp.271-276
    • /
    • 2001
  • A geometric kernel is the library of core mathematical functions that defines and stores 3D shapes in response to users'commands. We developed a light geometric kernel suitable to develop CAD/CAM application systems. The kernel contains geometric objects, such as points, curves and surfaces and a minimal set of functions for each type but does not contain lots of modeling and handling functions that are useful to create and maintain complex shapes from an idea sketch. The kernel was developed on MS-Windows NT using C++ with STL(Standard Template Library) but it is compatible with UNIX environments. This paper describes the structure of the kernel including several components: base, math, point sequence curve, geometry, translators. The base kernel gives portability to applications and the math kernel contains basic arithmetic and their classes, such as vector and matrix. The geometry kernel contains points, parametric curves, and parametric surfaces. A neutral fie format and programming and document styles are also presented in this paper.

  • PDF

PDM기반 조립체 DMU를 위한 웹뷰어 형상커널의 설계 (Geometric Kernel Design of the Web-Viewer for the PDM Based Assembly DMU)

  • 송인호;정성종
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.260-268
    • /
    • 2007
  • Demand for the use of 3D CAD DMU systems over the Internet environment has been increased. However, transmission of commercial 3D kernels has delayed the communication effectiveness due to the kernel size. Light weight CAD geometric kernel design methodology is required for rapid transmission in the distributed environment. In this paper, an assembly data structure suitable for the top-down and bottom-up assembly models has been constructed. Part features are stored without a hierarchy so that they are created and saved in no particular order. In particular, this paper proposes a new assembly representation model, called multi-level assembly representation (MAR), for the PDM based assembly DMU system. Since the geometric kernel retains assembly hierarchy and topological information, it is applied to the web-viewer for the PDM based DMU system. Effectiveness of the proposed geometric kernel is confirmed through various case studies.

STEP 데이터베이스를 Native Storage로 가지는 3차원 선체 CAD에서 형상 모델링 커널과 데이터베이스간의 인터페이스 (Interface between Geometric Kernel and Database for a Ship CAD which has a STEP Database as the Native Storage)

  • 김준환;한순흥
    • 한국CDE학회논문집
    • /
    • 제7권3호
    • /
    • pp.202-209
    • /
    • 2002
  • It is difficult to support collaborative design with a conventional ship CAD system which manages design information using files. In this research, file storage has been replaced with a database. This paper describes the OpenDIS which is an interface between the geometric kernel and the database. Its main purpose is to implement the CAD system which has the STEP database as the native storage. A prototype CAD system has been implemented using that OpenDIS interface which is implemented by OpenCascade geometric kernel and the Objectstore object-oriented database. The STEP methodology is used as the database schema. This CAD system has been applied to the hull design of a ship in order to verify the usefulness of the interface.

곡면 모델링 커널 개발 (Development of a Surface Modeling Kernel)

  • 전차수;구미정;박세형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.774-778
    • /
    • 1996
  • Developed in this research is a surface modeling kernel for various CAD/CAM applications. Its internal surface representations are rational parametric polynomials, which are generalizations of nonrational Bezier, Ferguson, Coons and NURBS surface, and are very fast in evaluation. The kernel is designed under the OOP concepts and coded in C++ on PCs. The present implementation of the kernel supports surface construction methods, such as point data interpolation, skinning, sweeping and blending. It also has NURBS conversion routines and offers the IGES and ZES format for geometric information exchange. It includes some geometric processing routines, such as surface/surface intersection, curve/surface intersection, curve projection and so forth. We are continuing to work with the kernel and eventually develop a B-Rep based solid modeler.

  • PDF

고속 최소자승 점별계산법을 이용한 멀티 스케일 문제의 해석 (FCM for the Multi-Scale Problems)

  • 김도완;김용식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.599-603
    • /
    • 2002
  • We propose a new meshfree method to be called the fast moving least square reproducing kernel collocation method(FCM). This methodology is composed of the fast moving least square reproducing kernel(FMLSRK) approximation and the point collocation scheme. Using point collocation makes the meshfree method really come true. In this paper, FCM Is shown to be a good method at least to calculate the numerical solutions governed by second order elliptic partial differential equations with geometric singularity or geometric multi-scales. To treat such problems, we use the concept of variable dilation parameter.

  • PDF

Hybrid Representations for Enveloping Modeling in Gearing

  • Voznyuk, Roman
    • International Journal of CAD/CAM
    • /
    • 제3권1_2호
    • /
    • pp.13-17
    • /
    • 2003
  • Hybrid method of representing geometric entities as combination of boundary (B-rep) and functional (F-rep) representations is presented which can be used as a basis of solid modeling kernel. It contains whole functionality of classic B-rep kernel, and also supports enveloping (sweep of solid body). Principles and keysolutions are considered. Example of a real task that comes from gearing is provided.

Comparison of Two Semi-Empirical BRDF algorithms using SPOT/VGT

  • Lee, Chang Suk;Han, Kyung-Soo
    • 대한원격탐사학회지
    • /
    • 제29권3호
    • /
    • pp.307-314
    • /
    • 2013
  • The Bidirectional Reflectance Distribution (BRD) effect is critical to interpret the surface information using remotely sensed data. This effect was caused by geometric relationship between sensor, target and solar that is inevitable effect for data of optical sensor. To remove the BRD effect, semi-empirical BRDF models are widely used. It is faster to calculate than physical models and demanded less observation than empirical models. In this study, Ross-Li kernel and Roujean kernel were used respectively in National Aeronautics and Space Administration (NASA) and European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) that are used to compare each other. The semi-empirical model consists of three parts which are isotropic, geometric and volumetric scattering. Each part contained physical kernel and empirical coefficients that were calculated by statistical method. Red and NIR channel of SPOT/VEGETATION product were used to compute Nadir BRDF Adjusted Reflectance (NBAR) over East Asia area from January 2009 to December 2009. S1 product was provided by VITO that was conducted atmospheric correction using Simplified Method of Atmospheric Correction (SMAC). NBAR was calculated using corrected reflectance of red and NIR. Previous study has revealed that Roujean geometric kernel had unphysical values in large zenith angles. We extracted empirical coefficients in three parts and normalized reflectance to compare both BRDF models. Two points located forest in Korea peninsular and bare land in Gobi desert were selected for comparison. As results of time series analysis, both models showed similar reflectance change pattern and reasonable values. Whereas in case of empirical coefficients comparison, different changes pattern of values were showed in isotropic coefficients.

An Efficiency Assessment for Reflectance Normalization of RapidEye Employing BRD Components of Wide-Swath satellite

  • Kim, Sang-Il;Han, Kyung-Soo;Yeom, Jong-Min
    • 대한원격탐사학회지
    • /
    • 제27권3호
    • /
    • pp.303-314
    • /
    • 2011
  • Surface albedo is an important parameter of the surface energy budget, and its accurate quantification is of major interest to the global climate modeling community. Therefore, in this paper, we consider the direct solution of kernel based bidirectional reflectance distribution function (BRDF) models for retrieval of normalized reflectance of high resolution satellite. The BRD effects can be seen in satellite data having a wide swath such as SPOT/VGT (VEGETATION) have sufficient angular sampling, but high resolution satellites are impossible to obtain sufficient angular sampling over a pixel during short period because of their narrow swath scanning when applying semi-empirical model. This gives a difficulty to run BRDF model inferring the reflectance normalization of high resolution satellites. The principal purpose of the study is to estimate normalized reflectance of high resolution satellite (RapidEye) through BRDF components from SPOT/VGT. We use semi-empirical BRDF model to estimated BRDF components from SPOT/VGT and reflectance normalization of RapidEye. This study used SPOT/VGT satellite data acquired in the S1 (daily) data, and within this study is the multispectral sensor RapidEye. Isotropic value such as the normalized reflectance was closely related to the BRDF parameters and the kernels. Also, we show scatter plot of the SPOT/VGT and RapidEye isotropic value relationship. The linear relationship between the two linear regression analysis is performed by using the parameters of SPOTNGT like as isotropic value, geometric value and volumetric scattering value, and the kernel values of RapidEye like as geometric and volumetric scattering kernel Because BRDF parameters are difficult to directly calculate from high resolution satellites, we use to BRDF parameter of SPOT/VGT. Also, we make a decision of weighting for geometric value, volumetric scattering value and error through regression models. As a result, the weighting through linear regression analysis produced good agreement. For all sites, the SPOT/VGT isotropic and RapidEye isotropic values had the high correlation (RMSE, bias), and generally are very consistent.

중력 침강에 의한 입자 응집의 해석적 연구 (Analysis of Gravitational Coagulation of Aerosol Particles)

  • 진형아;정창훈;이규원
    • 한국대기환경학회지
    • /
    • 제14권4호
    • /
    • pp.303-312
    • /
    • 1998
  • To obtain the solution to the time-dependent particle size distribution of an aerosol undergoing gravitational coagulation, the moment method was used which converts the non linear integro-differential equation to a set of ordinary differential equations. A semi-numerical solution was obtained using this method. Subsequently, an analytic solution was given by approximating the collision kernel into a form suitable for the analysis. The results show that during gravitational coagulation, the geometric standard deviation increases and the geometric mean radius decreases as time increases.

  • PDF

상업용 CAD에서 STEP 기반 객체지향 데이터베이스 내부의 형상 인스턴스 검색 및 수정 (Manipulating Geometry Instances in an STEP-based OODB from Commercial CAD Systems)

  • 김준환;한순홍
    • 대한산업공학회지
    • /
    • 제28권4호
    • /
    • pp.435-442
    • /
    • 2002
  • It is difficult to access and share design data among heterogeneous CAD systems. Usually, different CAD systems exchange the design data using a neutral format such as IGES or STEP. A prototype CAD system which uses a geometric kernel and a commercial database management system has been implemented. The prototype system used the Open Cascade geometric kernel and the commercial object-oriented database ObjectStore. STEP provides the database schema. The database can be accessed from commercial CAD systems such as SolidWorks or Unigraphics. The data access module from a commercial CAD system is developed with the CAD system's native API, ObjectStore API functions, and ActiveX.