• Title/Summary/Keyword: Geometric distribution

검색결과 680건 처리시간 0.021초

지상기준점을 이용한 TIN기반 기하보정방법에 관한 연구 (A Study on geometric correction using GCP)

  • 서지훈;정수;김경옥
    • 대한공간정보학회지
    • /
    • 제10권3호
    • /
    • pp.115-122
    • /
    • 2002
  • 위성으로 취득되는 영상이 원천적으로 가지게 되는 기하적, 물리적인 왜곡을 제거하기 위해서는 보정 과정이 필요하다. 기하 보정 방법에는 시스템 기하보정과 지상기준점을 이용한 기하보정 방법이 있는데, 본 논문에서는 지상기준점을 이용한 보정 방법에 대해 기술하고 TIN 단위로 기하보정하는 방법을 제안한다. 영상과 지상기준점과의 수학적인 상관 관계를 이용하여 왜곡을 보정하는 방법으로서 평면 전체를 변환시키는 평면기하보정이 주로 사용되어 왔으나, 이것은 지형 변화가 큰 지역의 왜곡을 제대로 보정하지 못하는 단점이 있다. 본 논문에서는 이를 보완하기 위해 TIN단위의 기하보정 방법을 제안하고 평면기하보정 방법과 결과를 비교하며, 지상기준점과의 상관성을 분석한다.

  • PDF

Analysis of BRD Components Over Major Land Types of Korea

  • Kim, Sang-Il;Han, Kyung-Soo;Park, Soo-Jea;Pi, Kyoung-Jin;Kim, In-Hwan;Lee, Min-Ji;Lee, Sun-Gu;Chun, Young-Sik
    • 대한원격탐사학회지
    • /
    • 제26권6호
    • /
    • pp.653-664
    • /
    • 2010
  • The land surface reflectance is a key parameter influencing the climate near the surface. Therefore, it must be determined with sufficient accuracy for climate change research. In particular, the characteristics of the bidirectional reflectance distribution function (BRDF) when using earth observation system (EOS) are important for normalizing the reflected solar radiation from the earth's surface. Also, wide swath satellites like SPOT/VGT (VEGETATION) permit sufficient angular sampling, but high resolution satellites are impossible to obtain sufficient angular sampling over a pixel during short period because of their narrow swath scanning. This gives a difficulty to BRDF model based reflectance normalization of high resolution satellites. The principal objective of the study is to add BRDF modeling of high resolution satellites and to supply insufficient angular sampling through identifying BRDF components from SPOT/VGT. This study is performed as the preliminary data for apply to high-resolution satellite. The study provides surface parameters by eliminating BRD effect when calculated biophysical index of plant by BRDF model. We use semi-empirical BRDF model to identify the BRD components. This study uses SPOT/VGT satellite data acquired in the S1 (daily) data. Modeled reflectance values show a good agreement with measured reflectance values from SPOT satellite. This study analyzes BRD effect components by using the NDVI(Normalized Difference Vegetation Index) and the angle components such as solar zenith angle, satellite zenith angle and relative azimuth angle. Geometric scattering kernel mainly depends on the azimuth angle variation and volumetric scattering kernel is less dependent on the azimuth angle variation. Also, forest from land cover shows the wider distribution of value than cropland, overall tendency is similar. Forest shows relatively larger value of geometric term ($K_1{\cdot}f_1$) than cropland, When performed comparison between cropland and forest. Angle and NDVI value are closely related.

Vibration analysis and optimization of functionally graded carbon nanotube reinforced doubly-curved shallow shells

  • Hammou, Zakia;Guezzen, Zakia;Zradni, Fatima Z.;Sereir, Zouaoui;Tounsi, Abdelouahed;Hammou, Yamna
    • Steel and Composite Structures
    • /
    • 제44권2호
    • /
    • pp.155-169
    • /
    • 2022
  • In the present paper an analytical model was developed to study the non-linear vibrations of Functionally Graded Carbon Nanotube (FG-CNT) reinforced doubly-curved shallow shells using the Multiple Scales Method (MSM). The nonlinear partial differential equations of motion are based on the FGM shallow shell hypothesis, the non-linear geometric Von-Karman relationships, and the Galerkin method to reduce the partial differential equations associated with simply supported boundary conditions. The novelty of the present model is the simultaneous prediction of the natural frequencies and their mode shapes versus different curvatures (cylindrical, spherical, conical, and plate) and the different types of FG-CNTs. In addition to combining the vibration analysis with optimization algorithms based on the genetic algorithm, a design optimization methode was developed to maximize the natural frequencies. By considering the expression of the non-dimensional frequency as an objective optimization function, a genetic algorithm program was developed by valuing the mechanical properties, the geometric properties and the FG-CNT configuration of shallow double curvature shells. The results obtained show that the curvature, the volume fraction and the types of NTC distribution have considerable effects on the variation of the Dimensionless Fundamental Linear Frequency (DFLF). The frequency response of the shallow shells of the FG-CNTRC showed two types of nonlinear hardening and softening which are strongly influenced by the change in the fundamental vibration mode. In GA optimization, the mechanical properties and geometric properties in the transverse direction, the volume fraction, and types of distribution of CNTs have a considerable effect on the fundamental frequencies of shallow double-curvature shells. Where the difference between optimized and not optimized DFLF can reach 13.26%.

2 Vane 펌프 임펠러의 성능 개선에 관한 수치해석적 연구 (A Numerical Study on the Improvement of Performance for the 2 Vane Pump Impeller)

  • 김성;마상범;최영석;김진혁
    • 한국수소및신에너지학회논문집
    • /
    • 제31권3호
    • /
    • pp.293-301
    • /
    • 2020
  • This paper describes a numerical study on the improvement of performance of the 2 vane pump impellers. The design of these impellers was optimized using a commercial computation fluid dynamics code and design of experiments. Geometric design variables were defined by the impeller blade angle distribution. The objective functions were defined as the total head, total efficiency and solid material size of the impellers. The importance of the geometric design variables was analyzed using 2k factorial designs. The interaction between the total head, total efficiency and solid material size, according to the impeller blade angle distribution, is discussed by analyzing the 2k factorial design results.

승용차 시트프레임의 강도해석 (The Strength Analysis of Passenger Car Seat Frame)

  • 임종명;장인식
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.205-212
    • /
    • 2003
  • This paper may provide a basic design data for the safer car seat mechanism and the quality of the material used by finding out the passenger's dynamic behavior when protected by seat belt during collision. A computer simulation with finite element method is used to accomplish this objective. At first, a detailed geometric model of the seat is constructed using CAD program. The formation of a finite element from a geometric data of the seat is carried out using Hyper-Mesh that is the commercial software for mesh generation and post processing. In addition to seat modeling, the finite element model of seat belt and dummy is formed using the same software. Rear impact analysis is accomplished using Pam-Crash with crash pulse. The part of the recliner and right frame is under big stress in rear crash analysis because the acceleration force is exerted on the back of the seat by dummy. The stress condition of the part of the bracket is checked as well because it is considered as an important variable on the seat design. Front impact model which including dummy and seal belt is analyzed. A Part of anchor buckle of seat frame has high stress distribution because of retraction force due to forward motion of dummy at the moment of collision. On the basis of the analysis result, remodeling and reanalysis works had been repeatedly done until a satisfactory result is obtained.

Smart Rectification on Satellite images

  • Seo, Ji-Hun;Jeong, Soo;Kim, Kyoung-Ok
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.75-80
    • /
    • 2002
  • The mainly used technique to rectify satellite images with distortion is to develop a mathematical relationship between the pixel coordinates on the image and the corresponding points on the ground. By defining the relationship between two coordinate systems, a polynomial model is designed and various linear transformations are used. These GCP based geometric correction has performed overall plane to plane mapping. In the overall plane mapping, overall structure of a scene is considered, but local variation is discarded. The highly variant height of region is resampled with distortion in the rectified image. To solve this problem this paper proposed the TIN-based rectification on a satellite image. The TIN based rectification is good to correct local distortion, but insufficient to reflect overall structure of one scene. So, this paper shows the experimental result and the analysis of each rectification model. It also describes the relationship GCP distribution and rectification model. We can choose a geometric correction model as the structural characteristic of a satellite image and the acquired GCP distribution.

  • PDF

초기하분포 소프트웨어 신뢰성 성장 모델에서의 모수 추정과 예측 방법 (Parameter Estimation and Prediction methods for Hyper-Geometric Distribution software Reliability Growth Model)

  • 박중양;유창열;이부권
    • 한국정보처리학회논문지
    • /
    • 제5권9호
    • /
    • pp.2345-2352
    • /
    • 1998
  • 최근에 개발되어 성공적으로 적용되고 있는 초기하분포 소프트웨어 신뢰성 성장 모델의 모수는 최우추정법으로 추정하기가 쉽지 않으므로주로 최소자승법으로 추정하고 있다. 본 논문에서는 먼저 기존의 최소자승법에서 사용된 최소화 기준을 비교한 다음, 새로 발견되는 결함수의 분산이 일정하지 않음을 고려한 가중최소자승법을 제안한다. 그리고 두 개의 실제 자료를 분석하여 가중최소자승법이 적합함을 보인다. 마지막으로 임의의 테스팅 시점에서 추가 시험에 의해 발견된 새로운 결함수를 예측하는 방법을 제안한다. 이 예측 방법은 테스팅을 중단하는 시점을 결정할 때 이용될 수 있을 것이다.

  • PDF

유한모집단의 신제품 품질평가를 위한 소표본 샘플링검사 방법에 대한 소고 (A Study on Small-Sample Inspection Plan for New Product Quality Evaluation of Finite Population)

  • 변재현;신병철;이창우
    • 대한산업공학회지
    • /
    • 제41권1호
    • /
    • pp.115-120
    • /
    • 2015
  • Evaluating product quality level is necessary before the manufactured items are delivered to the customer. When the amount of the items to be manufactured is limited and the product is of high price and should be evaluated by destructive testing, the number of samples to be tested should be as small as possible. This paper presents a small-sample inspection method using hyper-geometric distribution and Bayesian approach for finite small-sized population. A method of determining the minimum sample size is presented for given population size, allowable number of defectives, warranteed defective level, and confidence level which is the degree of confidence on the product quality level recognized by both the producer and the customer.

Dilution of Precision (DOP) Based Landmark Exclusion Method for Evaluating Integrity Risk of LiDAR-based Navigation Systems

  • Choi, Pil Hun;Lee, Jinsil;Lee, Jiyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권3호
    • /
    • pp.285-292
    • /
    • 2020
  • This paper introduces a new computational efficient Dilution of Precision (DOP)-based landmark exclusion method while ensuring the safety of the LiDAR-based navigation system that uses an innovation-based Nearest-Neighbor (NN) Data Association (DA) process. The NN DA process finds a correct landmark association hypothesis among all potential landmark permutations using Kalman filter innovation vectors. This makes the computational load increases exponentially as the number of landmarks increases. In this paper, we thus exclude landmarks by introducing DOP that quantifies the geometric distribution of landmarks as a way to minimize the loss of integrity performance that can occur by reducing landmarks. The number of landmarks to be excluded is set as the maximum number that can satisfy the integrity risk requirement. For the verification of the method, we developed a simulator that can analyze integrity risk according to the landmark number and its geometric distribution. Based on the simulation, we analyzed the relationship between DOP and integrity risk of the DA process by excluding each landmark. The results showed a tendency to minimize the loss of integrity performance when excluding landmarks with poor DOP. The developed method opens the possibility of assuring the safety risk of the Lidar-based navigation system in real-time applications by reducing a substantial amount of computational load.

음장의 공간 복소 포락: 정의와 특성 (Spatial Complex Envelope of Acoustic Field : Its Definition and Characteristics)

  • 박춘수;김양한
    • 한국소음진동공학회논문집
    • /
    • 제17권8호
    • /
    • pp.693-700
    • /
    • 2007
  • We can predict spatial acoustic pressure distribution on the plane of interest by using acoustic holography. However, the information embedded in the distribution plot is usually much more than what we need: for example, source locations and their overall propagation pattern. One possible candidate to solve the problem is complex envelope analysis. Complex envelope analysis extracts slowly-varying envelope signal from a band signal. We have attempted to extend this method to space domain so that we can have spatial information that we need. We have to modulate two dimensional data for obtaining spatial envelope. Although spatial modulation basically follows the same concept that is used in time domain, the algorithm for the spatial modulation turns out to be different from temporal modulation. We briefly describe temporal complex envelope analysis and extend it to spatial envelope of 2-D acoustic field by introducing geometric transformation. In the end, the results of applying the spatial envelope to the holography are envisaged and verified.